Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 14, 2023

LaNiIn1–xSn x and CeNiIn1–xSn x solid solutions at T = 870 K

  • Galyna Nychyporuk , Nataliya Dominyuk , Ihor Muts , Anatoliy Zelinskiy , Rainer Pöttgen EMAIL logo and Vasyl Zaremba

Abstract

The solid solutions LaNiIn1–xSn x and CeNiIn1–xSn x were studied by means of X-ray powder diffraction and EDX analyses in the full concentration range for samples annealed at T = 870 K. The limited solubility of the fourth component in the starting compounds with equiatomic composition, and the limits and the unit cell parameters of the solid solutions have been determined. The crystal structure of CeNiIn0.57Sn0.43 was refined from single-crystal X-ray diffraction data: ZrNiAl-type structure; hexagonal space group P 6 2m, a = 0.74213(10), c = 0.40825(8) nm, R1 = 0.0155, wR2 = 0.0303, 282 independent hkl reflections and 15 refined parameters. The existence ranges within the solid solutions are discussed.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgment

The authors are grateful to P. Yu. Demchenko for his help in obtaining separate diffractograms, to V. M. Kordan for his help in studying the microstructures of selected samples and to Dipl.-Ing. U. Ch. Rodewald for collecting the single-crystal data. N. Dominyuk is indebted to DAAD for a research stipend.

  1. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  2. Research funding: This work was partly supported by the Simons Foundation (Award Number: 1037973).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Kalychak, Y. M., Zaremba, V. I., Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Rare earth–transition metal–indides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Bünzli, J.-C., Pecharsky, V. K., Eds., Vol. 34. Elsevier: Amsterdam, 2005; pp. 1–133.10.1016/S0168-1273(04)34001-8Search in Google Scholar

2. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (Release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Search in Google Scholar

3. Skolozdra, R. V. Stannides of rare-earth and transition metals. In: Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A.Jr., Eyring, L., Eds., Vol. 24. Elsevier Science: Amsterdam, 1997; pp. 399−517.10.1016/S0168-1273(97)24009-2Search in Google Scholar

4. Bodak, O. I., Gladyshevsky, E. I. Ternary System Containing Rare Earth Metals; Vyshcha Shkola: Directory, Lviv, 1985; p. 328.Search in Google Scholar

5. Janka, O., Niehaus, O., Pöttgen, R., Chevalier, B. Z. Naturforsch. 2016, 71b, 737–764; https://doi.org/10.1515/znb-2016-0101.Search in Google Scholar

6. Gupta, S., Suresh, K. G. J. Alloys Compd. 2015, 618, 562–606; https://doi.org/10.1016/j.jallcom.2014.08.079.Search in Google Scholar

7. Szytuła, A., Tyvanchuk, Y., Jaworska-Gołąb, T., Zarzycki, A., Kalychak, Y., Gondek, Ł., Stüsser, N. Chem. Met. Alloys 2008, 1, 97–101; https://doi.org/10.30970/cma1.0012.Search in Google Scholar

8. Kuang, J. P., Cui, H. J., Li, J. Y., Yang, F. M., Nakotte, H., Brück, E., de Boer, F. R. J. Magn. Magn. Mater. 1999, 104–107, 1475–1476; https://doi.org/10.1016/0304-8853(92)90669-f.Search in Google Scholar

9. Fujii, H., Inoue, T., Andoh, Y., Takabatake, T., Satoh, K., Maeno, Y., Fujita, T., Sakurai, J., Yamaguchi, Y. Phys. Rev. B 1989, 39, 6840–6843; https://doi.org/10.1103/physrevb.39.6840.Search in Google Scholar PubMed

10. Skolozdra, R. V., Koretskaya, O. E., Gorelenko, Y. K. Inorg. Mater. 1984, 20, 520–523.Search in Google Scholar

11. Nakamoto, G., Takabatake, T., Fujii, H., Minami, A., Maezawa, K., Oguro, I., Menovsky, A. A. J. Phys. Soc. Jpn. 1995, 64, 4834–4840; https://doi.org/10.1143/jpsj.64.4834.Search in Google Scholar

12. Raymond, S., Regnault, L. P., Kadowaki, H., Nakamoto, G., Takabatake, T., Flouquet, J. Phys. B 1997, 230–232, 667–669; https://doi.org/10.1016/s0921-4526(96)00784-3.Search in Google Scholar

13. Singleton, J., Hill, S. O., Ardavan, A., Matsui, H., Blundell, S. J., Hayes, W., Goy, P., Bucher, E., Hohl, H., Nakamoto, G., Menovsky, A. A., Takabatake, T. Phys. B 1996, 216, 333–335; https://doi.org/10.1016/0921-4526(95)00509-9.Search in Google Scholar

14. Brückl, A., Neumaier, K., Einzel, D., Andres, K., Flaschin, S., Kalvius, G. M., Nakamoto, G., Takabatake, T. J. Low Temp. Phys. 1999, 115, 291–306; https://doi.org/10.1023/a:1021883621341.10.1023/A:1021883621341Search in Google Scholar

15. Mair, S., von Nidda, H.-A. K., Lohmann, M., Loidl, A. Phys. Rev. B 1999, 60, 16409–16414; https://doi.org/10.1103/physrevb.60.16409.Search in Google Scholar

16. Adroja, D. T., Rainford, B. D., Neville, A. J., Mandal, P., Jansen, A. G. M. J. Magn. Magn. Mater. 1996, 161, 157–168; https://doi.org/10.1016/s0304-8853(96)00034-0.Search in Google Scholar

17. Schröder, A., Aeppli, G., Mason, T. E., Bucher, E. Phys. B 1997, 234–236, 861–863; https://doi.org/10.1016/s0921-4526(96)01136-2.Search in Google Scholar

18. Takabatake, T., Nakazawa, Y., Ishikawa, M., Sakakibara, T., Koga, K., Oguro, I. J. Magn. Magn. Mater. 1988, 76–77, 87–88; https://doi.org/10.1016/0304-8853(88)90325-3.Search in Google Scholar

19. Kalvius, G. M., Kratzer, A., Grosse, G., Noakes, D. R., Wäppling, R., von Löhneysen, H., Takabatake, T., Echizen, Y. Phys. B 2000, 289–290, 256–260; https://doi.org/10.1016/s0921-4526(00)00387-2.Search in Google Scholar

20. Echizen, Y., Umeo, K., Takabatake, T. Solid State Commun. 1999, 111, 153–157; https://doi.org/10.1016/s0038-1098(99)00160-x.Search in Google Scholar

21. Drew, A. J., Lee, S. L., Ogrin, F. Y., Charalambous, D., Bancroft, N., Paul, D. M., Takabatake, T., Baines, C. Phys. B 2006, 374–375, 270–273; https://doi.org/10.1016/j.physb.2005.11.072.Search in Google Scholar

22. Yartys, V. A., Olavesen, T., Hauback, B. C., Fjellvåg, H., Brinks, H. W. J. Alloys Compd. 2002, 330–332, 141–145; https://doi.org/10.1016/s0925-8388(01)01523-7.Search in Google Scholar

23. Nolze, G., Kraus, W. Powder Diffr. 1998, 13, 256–259.10.1017/S0885715600020856Search in Google Scholar

24. Stoe WinXpow (Version 1.2), STOE & Cie GmbH: Darmstadt, Germany, 2001.Search in Google Scholar

25. Rodríguez-Carvajal, J. Commission on Powder Diffraction, IUCr Newsletter 2001, 26, 12–19.Search in Google Scholar

26. Sheldrick, G. M. Shelxl-97: Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997.Search in Google Scholar

27. Krypyakevych, P. I., Markiv, V. Y., Mel’nyk, E. V. Dopov. AN URSR, Ser. A 1967, 750–753.Search in Google Scholar

28. Shoemaker, C. B., Shoemaker, D. P. Acta Crystallogr. 1965, 18, 900–905; https://doi.org/10.1107/s0365110x65002189.Search in Google Scholar

29. Emsley, J. The Elements, 2nd ed.; Clarendon Press: Oxford, 1991.Search in Google Scholar

30. Zaremba, N., Schepilov, Y., Nychyporuk, G., Muts, I., Pavlyuk, V., Zaremba, V. Visn. Lviv Univ. Ser. Chem. 2020, 61, 44–51; https://doi.org/10.30970/vch.6101.044.Search in Google Scholar

31. Zaremba, N., Nychyporuk, G., Schepilov, Y., Panakhyd, O., Muts, I., Hlukhyy, V., Pavlyuk, V. Ukr. Chem. J. 2018, 84, 76–84.Search in Google Scholar

32. Zaremba, N., Nychyporuk, G., Schepilov, Y., Serkiz, R., Hlukhyy, V., Pavlyuk, V. Visn. Lviv Univ. Ser. Chem. 2019, 60, 82–90; https://doi.org/10.30970/vch.6001.082.Search in Google Scholar

33. Zaremba, N. V. Ph.D. Thesis, Lviv National University, Lviv, 2020.Search in Google Scholar

34. Chumalo, N., Demchuk, V., Nychyporuk, G., Zaremba, V. Visn. Lviv Univ. Ser. Chem. 2010, 51, 24–30.Search in Google Scholar

Received: 2023-05-11
Accepted: 2023-05-21
Published Online: 2023-06-14
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0036/html
Scroll to top button