Skip to main content

Advertisement

Log in

Integrated data-driven and experimental approaches to accelerate lead optimization targeting SARS-CoV-2 main protease

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Identification of potential therapeutic candidates can be expedited by integrating computational modeling with domain aware machine learning (ML) models followed by experimental validation in an iterative manner. Generative deep learning models can generate thousands of new candidates, however, their physiochemical and biochemical properties are typically not fully optimized. Using our recently developed deep learning models and a scaffold as a starting point, we generated tens of thousands of compounds for SARS-CoV-2 Mpro that preserve the core scaffold. We utilized and implemented several computational tools such as structural alert and toxicity analysis, high throughput virtual screening, ML-based 3D quantitative structure-activity relationships, multi-parameter optimization, and graph neural networks on generated candidates to predict biological activity and binding affinity in advance. As a result of these combined computational endeavors, eight promising candidates were singled out and put through experimental testing using Native Mass Spectrometry and FRET-based functional assays. Two of the tested compounds with quinazoline-2-thiol and acetylpiperidine core moieties showed IC\(_{50}\) values in the low micromolar range: \(2.95\pm 0.0017\) \(\upmu\)M and 3.41±0.0015 \(\upmu\)M, respectively. Molecular dynamics simulations further highlight that binding of these compounds results in allosteric modulations within the chain B and the interface domains of the Mpro. Our integrated approach provides a platform for data driven lead optimization with rapid characterization and experimental validation in a closed loop that could be applied to other potential protein targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data produced in this study and in house developed Automated Modeling Engine for Covalent Docking (AMECovDock) pipeline can be found (in https://github.com/PNNL-CompBio/AMECovDock and Automated Modeling Engine for Covalent Docking (AMEnCovDock) pipeline https://github.com/nkkchem/AMEnCovDock. The 3D-Scaffold deep learning code that was used to generate warhead specific candidates can be found at https://github.com/PNNL-CompBio/3D_Scaffold. All-atom classical MD simulations in this study were carried out using the GROMACS 2018. 6 toolkit (https://www.gromacs.org/). Analyses used in this study such as root means square deviations (RMSD), atomic fluctuations (RMSF), and distance analyses, etc., were carried out using analysis tool in the GROMACS, CPPTRAJ in Ambertools package (https://ambermd.org). PyMOL (https://pymol.org/2/) and VMD 1.9.3 (https://www.ks.uiuc.edu/Research/vmd/) was used for visualizing simulation trajectories as well as taking and rendering the snapshots of simulations.

References

  1. Sun D, Gao W, Hu H, Zhou S (2022) Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B 12:3059

    Article  Google Scholar 

  2. Shivanyuk A, Ryabukhin S, Tolmachev A, Bogolyubsky A, Mykytenko D, Chupryna A, Heilman W, Kostyuk A (2007) Enamine real database: making chemical diversity real. Chem Today 25(6):58–59

    CAS  Google Scholar 

  3. Kiss R, Sandor M, Szalai F.A (2012) a public web service for drug discovery. J Cheminform 4(1):1–1 (http://mcule.com)

    Google Scholar 

  4. Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, Mutowo P, Atkinson F, Bellis LJ, Cibrián-Uhalte E et al (2017) The chembl database in 2017. Nucleic Acids Res 45(D1):D945–D954

    Article  CAS  PubMed  Google Scholar 

  5. Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4(2):268–276

    Article  PubMed  PubMed Central  Google Scholar 

  6. Guimaraes GL, Sanchez-Lengeling B, Outeiral C, Farias PLC, Aspuru-Guzik A(2017) Objective-reinforced generative adversarial networks (organ) for sequence generation models. http://arxiv.org/abs/1705.10843

  7. Dai H, Tian Y, Dai B, Skiena S, Song L (2018) Syntax-directed variational autoencoder for structured data. arXiv preprint http://arxiv.org/abs/1802.08786

  8. Popova M, Isayev O, Tropsha A (2018) Deep reinforcement learning for de novo drug design. Sci Adv 4(7):eaap7885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lim J, Hwang SY, Moon S, Kim S, Kim WY (2020) Scaffold-based molecular design with a graph generative model. Chem Sci 11(4):1153–1164

    Article  CAS  Google Scholar 

  10. Li Y, Hu J, Wang Y, Zhou J, Zhang L, Liu Z (2019) Deepscaffold: a comprehensive tool for scaffold-based de novo drug discovery using deep learning. J Chem Inf Model 60(1):77–91

    Article  PubMed  Google Scholar 

  11. Scott O.B, Edith Chan A (2020) an open-source library for the generation and analysis of molecular scaffold networks and scaffold trees. Bioinformatics 36(12):3930–3931

    Article  CAS  PubMed  Google Scholar 

  12. Schütt K.T, Sauceda H.E, Kindermans P.J, Tkatchenko A, Müller K.R (2018) Schnet: a deep learning architecture for molecules and materials. J Chem Phys 148(24):241–722

    Article  Google Scholar 

  13. Gebauer N, Gastegger M, Schütt K (2019) Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules. Adv Neural Inf Process Syst 32

  14. Joshi RP, Kumar N (2021) Artificial intelligence for autonomous molecular design: a perspective. Molecules 26(22):6761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Joshi RP, Gebauer NW, Bontha M, Khazaieli M, James RM, Brown JB, Kumar N (2021) 3d-scaffold: a deep learning framework to generate 3d coordinates of drug-like molecules with desired scaffolds. J Phys Chem B 125(44):12166–12176

    Article  CAS  PubMed  Google Scholar 

  16. Joshi RP, Schultz KJ, Wilson JW, Kruel A, Varikoti RA, Kombala CJ, Kneller DW, Galanie S, Phillips G, Zhang Q et al (2023) Ai-accelerated design of targeted covalent inhibitors for SARS-CoV-2. J Chem Inf Model 63:1438

    Article  CAS  PubMed  Google Scholar 

  17. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetsar: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52(11):3099

    Article  CAS  PubMed  Google Scholar 

  18. Grisoni F, Consonni V, Todeschini R (2018) Computational chemogenomics. Springer, New York, pp 171–209

    Book  Google Scholar 

  19. Perron Q, Mirguet O, Tajmouati H, Skiredj A, Rojas A, Gohier A, Ducrot P, Bourguignon M.P, Sansilvestri-Morel P, Do Huu, N et al (2022) Deep generative models for ligand-based de novo design applied to multi-parametric optimization. J Comput Chem 43(10):692–703

    Article  CAS  PubMed  Google Scholar 

  20. Lombardino JG, Lowe JA (2004) The role of the medicinal chemist in drug discovery-then and now. Nat Rev Drug Discov 3(10):853–862

    Article  CAS  PubMed  Google Scholar 

  21. Landrum G, et al (2013) Rdkit: a software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum

  22. López-López E, Naveja JJ, Medina-Franco JL (2019) Datawarrior: an evaluation of the open-source drug discovery tool. Expert Opin Drug Discov 14(4):335–341

    Article  PubMed  Google Scholar 

  23. Daina A, Michielin O, Zoete V (2017) Swissadme: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):1–13

    Article  Google Scholar 

  24. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminform 3(1):1–14

    Google Scholar 

  25. Vina A (2010) Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading trott, oleg; olson, arthur j. J Comput Chem 31(2):455–461

    Google Scholar 

  26. Hessler G, Baringhaus KH (2018) Artificial intelligence in drug design. Molecules 23(10):2520

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wen M, Zhang Z, Niu S, Sha H, Yang R, Yun Y, Lu H (2017) Deep-learning-based drug-target interaction prediction. J Proteome Res 16(4):1401–1409

    Article  CAS  PubMed  Google Scholar 

  28. Knutson C, Bontha M, Bilbrey JA, Kumar N (2022) Decoding the protein-ligand interactions using parallel graph neural networks. Sci Rep 12(1):1–14

    Article  Google Scholar 

  29. Qin B, Craven GB, Hou P, Chesti J, Lu X, Child ES, Morgan RM, Niu W, Zhao L, Armstrong A et al (2022) Acrylamide fragment inhibitors that induce unprecedented conformational distortions in enterovirus 71 3c and SARS-CoV-2 main protease. Acta Pharm Sin B 12:3974

    Article  Google Scholar 

  30. Citarella A, Scala A, Piperno A, Micale N (2021) SARS-CoV-2 mpro: a potential target for peptidomimetics and small-molecule inhibitors. Biomolecules 11(4):607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Coelho C, Gallo G, Campos C.B, Hardy L, Würtele M (2020) Biochemical screening for SARS-CoV-2 main protease inhibitors. PLoS ONE 15(10):e0240,079

    Article  CAS  Google Scholar 

  32. Ghahremanpour MM, Tirado-Rives J, Deshmukh M, Ippolito JA, Zhang CH, Cabeza de Vaca I, Liosi ME, Anderson KS, Jorgensen WL (2020) Identification of 14 known drugs as inhibitors of the main protease of SARS-CoV-2. ACS Med Chem Lett 11(12):2526–2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang CH, Spasov KA, Reilly RA, Hollander K, Stone EA, Ippolito JA, Liosi ME, Deshmukh MG, Tirado-Rives J, Zhang S et al (2021) Optimization of triarylpyridinone inhibitors of the main protease of SARS-CoV-2 to low-nanomolar antiviral potency. ACS Med Chem Lett 12(8):1325–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Narayanan A, Narwal M, Majowicz SA, Varricchio C, Toner SA, Ballatore C, Brancale A, Murakami KS, Jose J (2022) Identification of SARS-CoV-2 inhibitors targeting mpro and plpro using in-cell-protease assay. Commun Biol 5(1):1–17

    Article  Google Scholar 

  35. El-Masry RM, Al-Karmalawy AA, Alnajjar R, Mahmoud SH, Mostafa A, Kadry HH, Abou-Seri SM, Taher AT (2022) Newly synthesized series of oxoindole-oxadiazole conjugates as potential anti-SARS-CoV-2 agents: in silico and in vitro studies. New J Chem 46(11):5078–5090

    Article  CAS  Google Scholar 

  36. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (dud-e): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  38. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) Gromacs: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  PubMed  Google Scholar 

  39. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14sb: improving the accuracy of protein side chain and backbone parameters from ff99sb. J Chem Theory Comput 11(8):3696–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  41. Joung IS, Cheatham TE III (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112(30):9020–9041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Berendsen HJ, Postma JV, Van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  43. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190

    Article  CAS  Google Scholar 

  44. Darden T, York D, Pedersen L (1993) Particle mesh ewald: an n \(\cdot\) log (n) method for ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  45. Zemaitis KJ, Velickovic D, Kew W, Fort KL, Reinhardt-Szyba M, Pamreddy A, Ding Y, Kaushik D, Sharma K, Makarov AA et al (2022) Enhanced spatial mapping of histone proteoforms in human kidney through maldi-msi by high-field uhmr-orbitrap detection. Anal Chem 94(37):12604–12613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marty MT, Baldwin AJ, Marklund EG, Hochberg GK, Benesch JL, Robinson CV (2015) Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal Chem 87(8):4370–4376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sterling T, Irwin JJ (2015) Zinc 15-ligand discovery for everyone. J Chem Inf Model 55(11):2324–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z et al (2018) Drugbank 5.0: a major update to the drugbank database for 2018. Nucleic Acids Res 46(D1):D1074–D1082

    Article  CAS  PubMed  Google Scholar 

  49. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, Christie CH, Dalenberg K, Di Costanzo L, Duarte JM et al (2021) Rcsb protein data bank: powerful new tools for exploring 3d structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res 49(D1):D437–D451

    Article  CAS  PubMed  Google Scholar 

  50. Kneller DW, Phillips G, O’Neill HM, Jedrzejczak R, Stols L, Langan P, Joachimiak A, Coates L, Kovalevsky A (2020) Structural plasticity of SARS-CoV-2 3cl mpro active site cavity revealed by room temperature x-ray crystallography. Nat Commun 11(1):1–6

    Article  Google Scholar 

  51. Clyde A, Galanie S, Kneller DW, Ma H, Babuji Y, Blaiszik B, Brace A, Brettin T, Chard K, Chard R et al (2021) High-throughput virtual screening and validation of a SARS-CoV-2 main protease noncovalent inhibitor. J Chem Inf Model 62(1):116–128

    Article  PubMed  Google Scholar 

  52. Greasley SE, Noell S, Plotnikova O, Ferre RA, Liu W, Bolanos B, Fennell KF, Nicki J, Craig T, Zhu Y, et al (2022) Structural basis for nirmatrelvir in vitro efficacy against the omicron variant of SARS-CoV-2. BioRxiv

  53. Consortium CM, Achdout H, Aimon A, Bar-David E, Barr H, Ben-Shmuel A, Bennett J, Boby ML, Borden B, Bowman GR, et al (2020) Open science discovery of oral non-covalent SARS-CoV-2 main protease inhibitor therapeutics. BioRxiv pp 2020–10

  54. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43(20):3714–3717

    Article  CAS  PubMed  Google Scholar 

  55. von Korff M, Sander T (2006) Toxicity-indicating structural patterns. J Chem Inf Model 46(2):536–544

    Article  Google Scholar 

  56. Ravindranath PA, Forli S, Goodsell DS, Olson AJ, Sanner MF (2015) Autodockfr: advances in protein-ligand docking with explicitly specified binding site flexibility. PLoS Comput Biol 11(12):e1004-586

    Article  Google Scholar 

  57. Alhossary A, Handoko SD, Mu Y, Kwoh CK (2015) Fast, accurate, and reliable molecular docking with quickvina 2. Bioinformatics 31(13):2214–2216

    Article  CAS  PubMed  Google Scholar 

  58. Wang Y, Xing J, Xu Y, Zhou N, Peng J, Xiong Z, Liu X, Luo X, Luo C, Chen K et al (2015) In silico adme/t modelling for rational drug design. Q Rev Biophys 48(4):488–515

    Article  PubMed  Google Scholar 

  59. UD of Health, H Services, et al (1999) Agency for toxic substances and disease registry-atsdr

  60. Richard AM, Judson RS, Houck KA, Grulke CM, Volarath P, Thillainadarajah I, Yang C, Rathman J, Martin MT, Wambaugh JF et al (2016) Toxcast chemical landscape: paving the road to 21st century toxicology. Chem Res Toxicol 29(8):1225–1251

    Article  CAS  PubMed  Google Scholar 

  61. Brenk R, Schipani A, James D, Krasowski A, Gilbert IH, Frearson J, Wyatt PG (2008) Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 3(3):435–444

    Article  CAS  PubMed  Google Scholar 

  62. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (pains) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740

    Article  CAS  PubMed  Google Scholar 

  63. Bruns RF, Watson IA (2012) Rules for identifying potentially reactive or promiscuous compounds. J Med Chem 55(22):9763–9772

    Article  CAS  PubMed  Google Scholar 

  64. Verma J, Khedkar VM, Coutinho EC (2010) 3d-qsar in drug design-a review. Curr Top Med Chem 10(1):95–115

    Article  CAS  PubMed  Google Scholar 

  65. Golbraikh A, Bonchev D, Tropsha A (2001) Novel chirality descriptors derived from molecular topology. J Chem Inf Comput Sci 41(1):147–158

    Article  CAS  PubMed  Google Scholar 

  66. Hall LH, Mohney B, Kier LB (1991) The electrotopological state: an atom index for qsar. Quant Struct-Act Relat 10(1):43–51

    Article  CAS  Google Scholar 

  67. DeLano W.L et al (2002) Pymol: an open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr 40(1):82–92

    Google Scholar 

  68. Kang B, Seok C, Lee J (2021) Molgengo: finding novel molecules with desired electronic properties by capitalizing on their global optimization. ACS Omega 6(41):27454–27465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xie Y, Shi C, Zhou H, Yang Y, Zhang W, Yu Y, Li L (2021) Mars: Markov molecular sampling for multi-objective drug discovery.http://arxiv.org/abs/2103.10432

  70. Segall MD (2012) Multi-parameter optimization: identifying high quality compounds with a balance of properties. Curr Pharm Des 18(9):1292

    Article  CAS  PubMed  Google Scholar 

  71. Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(11):2579

    Google Scholar 

  72. Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66(1):334–395

    Article  PubMed  PubMed Central  Google Scholar 

  73. Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, Case DA, Kuntz ID, Rizzo RC (2015) Dock 6: impact of new features and current docking performance. J Comput Chem 36(15):1132–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Beierlein FR, Michel J, Essex JW (2011) A simple qm/mm approach for capturing polarization effects in protein- ligand binding free energy calculations. J Phys Chem B 115(17):4911–4926

    Article  CAS  PubMed  Google Scholar 

  75. Karimi M, Wu D, Wang Z, Shen Y (2019) Deepaffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 35(18):3329–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Öztürk H, Özgür A, Ozkirimli E (2018) Deepdta: deep drug-target binding affinity prediction. Bioinformatics 34(17):i821–i829

    Article  PubMed  PubMed Central  Google Scholar 

  77. Li S, Wan F, Shu H, Jiang T, Zhao D, Zeng J (2020) Monn: a multi-objective neural network for predicting compound-protein interactions and affinities. Cell Syst 10(4):308–322

    Article  CAS  Google Scholar 

  78. Glaser J, Sedova A, Galanie S, Kneller DW, Davidson RB, Maradzike E, Del Galdo S, Labbé A, Hsu DJ, Agarwal R et al (2022) Hit expansion of a noncovalent SARS-CoV-2 main protease inhibitor. ACS Pharmacol Transl Sci 5(4):255–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ullrich S, Nitsche C (2020) The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett 30(17):127–377

    Article  Google Scholar 

  80. Rathnayake A.D, Zheng J, Kim Y, Perera K.D, Mackin S., Meyerholz D.K, Kashipathy M.M, Battaile K.P, Lovell S, Perlman S et al (2020) 3c-like protease inhibitors block coronavirus replication in vitro and improve survival in mers-cov–infected mice. Sci Transl Med 12(557):eabc5332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, Schroeder M (2021) Plip 2021: expanding the scope of the protein-ligand interaction profiler to dna and rna. Nucleic Acids Res 49(W1):W530–W534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the I3T Investment, under the Laboratory Directed Research and Development (LDRD) Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for the U.S. Department of Energy (DOE) by Battelle Memorial Institute under Contract No. DE-AC05-76RL01830. The computational work was performed using PNNL’s research computing at Pacific Northwest National Laboratory. Part of the research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL. The native MS experiment was performed under project (10.46936/staf.proj.2021.60268/60008436) at the Environmental Molecular Sciences Laboratory, a DOE Office of Science User Facility sponsored by the Biological and Environmental Research program and operated under Contract No. DE-AC05-76RL01830. We thank Carter Knutson and Andrew McNaughton at PNNL for extensive discussion on the 3D-Scaffold and helping on Graph neural networks for protein ligand interactions.

Funding

This project has received funding from the I3T Investment, under the Laboratory Directed Research and Development (LDRD) Program at Pacific Northwest National Laboratory (PNNL).

Author information

Authors and Affiliations

Authors

Contributions

NK contributed concept and implementation of the design of computational experiments. RAV performed compounds generation, HTV screening, docking and atomistic simulations, performed the analysis, prepared the figures and tables, prepared the supporting information, wrote a draft for the main manuscript, and edited the manuscript; KS performed QSAR analysis and edited the manuscript; KA performed HTV screening, and used deep learning models; KB and CK performed synthesis of the compounds and in-vitro assays. MZ implemented native-MS and performed the analysis. CJ and MZ wrote the in-vitro experimental section and prepared the figures. NK supervised atomistic simulations, docking simulations, deep learning models and edited the manuscript. All authors edited and reviewed the manuscript.

Corresponding author

Correspondence to Neeraj Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varikoti, R.A., Schultz, K.J., Kombala, C.J. et al. Integrated data-driven and experimental approaches to accelerate lead optimization targeting SARS-CoV-2 main protease. J Comput Aided Mol Des 37, 339–355 (2023). https://doi.org/10.1007/s10822-023-00509-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-023-00509-1

Keywords

Navigation