Skip to main content

Advertisement

Log in

Reactive Synthesis of B4C–CrB2, B4C–TiB2, AND B4C–TiCrB2 Heterophase Ceramics by Spark Plasma Sintering

  • THEORY AND TECHNOLOGY OF SINTERING, THERMAL AND THERMOCHEMICAL TREATMENT
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The reactive synthesis of heterophase refractory ultrahard B4C-based composites by spark plasma sintering (SPS) was examined. To produce heterophase B4C + TiB2 + CrB2 ceramics, the chemical reaction between boron carbide and chromium oxide and between boron carbide and titanium carbide resulting in boron carbide–chromium diboride and boron carbide–titanium diboride composites was previously studied. The reactive sintering of B4C + Cr2O3 + C and B4C + TiC mixtures using boron carbide powders obtained from the Zaporizhzhya Abrasive Plant and Donetsk Chemical Reagent Plant (Ukraine) was compared. The boron carbide powders differed in the ratio of B13C2 and B4C phases and particle sizes. The reactively synthesized TiB2, CrB2, and CrTiB2 boride phases positively influenced the SPS consolidation and properties of the boron carbide composites. The B4C–CrB2 and B4C–TiB2 ceramics subjected to Vickers hardness testing under a load of 98 N showed HV levels of 23–29 GPa and 26–28 GPa. The ceramics demonstrated brittle fracture according to the Half-penny model, with a fracture toughness of 3 MPa∙m1/2 for B4C–CrB2 and 4.4 MPa∙m1/2 for B4C–TiB2. The 90 vol.% B4C–5.5 vol.% TiCrB2–4.5 vol.% C ceramics with ~33 GPa hardness and ~ 4 MPa∙m1/2 fracture toughness were produced by reactive SPS from a mixture of B4C (Zaporizhzhya Abrasive Plant), 6.6 wt.% TiC, and 11 wt.% Cr2O3. The high strength of TiCrB2 ceramics was attributed to the stress–strain state, where the matrix phase of boron carbide was subjected to compressive stresses. The high hardness and fracture toughness allow the B4C–TiCrB2 composite to be classified as an ultrahard ceramic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

References

  1. F. Thevenot, “Boron carbide—a comprehensive review,” J. Eur. Ceram. Soc., 6, 205–225 (1990).

    Article  CAS  Google Scholar 

  2. T.K. Roy, C. Subramanian, and A.K. Suri, “Pressureless sintering of boron carbide,” Ceram. Int., 32, 227–233 (2006).

    Article  CAS  Google Scholar 

  3. A.K. Suri, C. Subramanian, J.K. Sonber, and T. Murthy, “Synthesis and consolidation of boron carbide: a review,” Int. Mater. Rev., 55, 4–40 (2010).

    Article  CAS  Google Scholar 

  4. L. Silvestroni, H.-J. Kleebe, W.G. Fahrenholtz, and J. Watts, “Super-strong materials for temperatures exceeding 2000°C,” Sci. Rep., No. 40730 (2017), https://doi.org/10.1038/srep40730.

  5. H. Lee and R.F. Speyer, “Pressureless sintering of boron carbide,” J. Am. Ceram. Soc., 86, No. 9, 1468–1473 (2003).

    Article  CAS  Google Scholar 

  6. B.-S. Lee and S. Kang, “Low-temperature processing of B4C–Al composites via infiltration technique,” Mater. Chem. Phys., 67, 249–255 (2001).

    Article  CAS  Google Scholar 

  7. H.W. Kim, Y.H. Koh, and H.E. Kim, “Densification and mechanical properties of B4C with Al2O3 as a sintering aid,” J. Am. Ceram. Soc., No. 83, 2863–2865 (2000).

  8. K.A. Schwetz, L.S. Sigl, and L. Pfau, “Mechanical properties of injection molded B4C–C ceramics,” J. Solid State Chem., 133, 68–76 (1997).

    Article  CAS  Google Scholar 

  9. Y. Kanno, K. Kawase, and K. Nakano, “Additive effect on sintering of boron carbide,” Yogyo-Kyokai-Shi., 95, 1137–1140 (1987).

    Article  CAS  Google Scholar 

  10. D.K. Kim and C.H. Kim, “Pressureless sintering and microstructural development of B4C–TiB2 based composites,” Adv. Ceram. Mater., No. 3, 52–55 (1988).

  11. M.S. Koval’chenko, Y.G. Tkachenko, V.V. Koval’chuk, D.Z. Yurchenko, S.V. Satanin, and A.I. Kharlamov, “Structure and properties of hot-pressed boron carbide base ceramics,” Powder Metall. Met. Ceram., 29, No. 7, 523–526 (1990).

  12. L.S. Sigl, “Processing and mechanical properties of boron carbide sintered with TiC,” J. Eur. Ceram. Soc., 18, 1521–1529 (1998).

    Article  CAS  Google Scholar 

  13. Z. Zakhariev and D. Radev, “Properties of polycrystalline boron carbide sintered in the presence of W2B5 without pressing,” J. Mater. Sci. Lett., 7, 695–696 (1988).

    Article  CAS  Google Scholar 

  14. J. Sun, C. Liu, and R. Wang, “Low pressure hot pressing of B4C matrix ceramic composites improved by Al2O3 and TiC additives,” Mater. Sci. Eng. A, 519, 27–31 (2009).

    Article  Google Scholar 

  15. V.V. Skorokhod, M.D. Vlajic, and V.D. Krstic, “Mechanical properties of pressureless sintered boron carbide containing TiB2 phase,” J. Mater. Sci. Lett., No. 15, 1337–1339 (1996).

  16. V.V. Skorokhod and V.D. Krstic, “High strength-high toughness B4C–TiB2 composites,” J. Mater. Sci. Lett., No. 19, 237–239 (2000).

  17. O.N. Grigoriev, S.A. Lapko, and E.G. Trunova, “Strength and stability of properties exhibited by hotpressed boron carbide,” Ogneup. Tekh. Keram., No. 3, 28–32 (2005).

  18. O.N. Grigor'ev, V.V. Koval'chuk, V.V. Zametailo, R.G. Timchenko, D.A. Kotlyar, and V.P. Yaroshenko, “Structure, physicochemical properties, and special features of failure of hot-pressed boron carbide base ceramics,” Powder Metall. Met. Ceram., 29, No. 7, 543–547 (1990).

    Article  Google Scholar 

  19. O. Vasylkiv, H. Borodianska, and J. Ma, “High hardness BaCb-(BxOy/BN) composites with 3D mesh-like fine grain-boundary structure by reactive spark plasma sintering,” J. Nanosci. Nanotechnol., 12, No. 2, 959–965 (2012).

    Article  CAS  Google Scholar 

  20. P. Badica, H. Borodianska, X. Shumao, T. Zhao, D. Demirskyi, P. Li, A.I.Y. Tok, Y. Sakka, and O. Vasylkiv, “Toughness control of boron carbide obtained by spark plasma sintering in nitrogen atmosphere,” Ceram. Int., 40, 3053–3061 (2014).

    Article  CAS  Google Scholar 

  21. P. Badica, S. Grasso, H. Borodianska, S.S. Xie, P. Li, P. Tatarko, M.J. Reece, Y. Sakka, and O. Vasylkiv, “Tough and dense boron carbide obtained by high-pressure (300 MPa) and low-temperature (1600°C) spark plasma sintering,” J. Ceram. Soc. Jpn., 122, 271–275 (2014).

    Article  Google Scholar 

  22. O. Vasylkiv, D. Demirskyi, P. Badica, T. Nishimura, A.I.Y. Tok, Y. Sakka, and H. Borodianska, “Room and high temperature flexural failure of spark plasma sintered boron carbide,” Ceram. Int., 42, 7001–7013 (2016).

    Article  CAS  Google Scholar 

  23. O. Vasylkiv, D. Demirskyi, H. Borodianska, Y. Sakka, and P. Badica, “High temperature flexural strength in monolithic boron carbide ceramic obtained from two different raw powders by spark plasma sintering,” J. Ceram. Soc. Jpn., 124, 587–592 (2016).

    Article  CAS  Google Scholar 

  24. C. Xu, Y. Cai, K. Flodström, Z. Li, S. Esmaeilzadeh, and G-J Zhang, “Spark plasma sintering of B4C ceramics: the effects of milling medium and TiB2 addition,” Int. J. Refract. Met. Hard Mater., No. 30, 139– 144 (2012).

  25. S.G. Huang, K. Vanmeensel, O. Van der Biest, and J. Vleugels, “In situ synthesis and densification of submicrometer-grained B4C–TiB2 composites by pulsed electric current sintering,” J. Eur. Ceram. Soc., No. 31, 637–644 (2011).

  26. D. Demirskyi, H. Borodianska, Y. Sakka, and O. Vasylkiv, “Ultra-high elevated temperature strength of TiB2-based ceramics consolidated by spark plasma sintering,” J. Eur. Ceram. Soc., 37, No. 1, 393–397 (2017).

    Article  CAS  Google Scholar 

  27. O. Malek, J. Vleugels, K. Vanmeensel, S. Huang, J. Liu, S. Van den Berghe, Amit Datye, Kuang-His Wu, and Bert Lauwers, “Electrical discharge machining of B4C–TiB2 composites,” J. Eur. Ceram. Soc., No. 31, 2023–2030 (2011).

  28. X. Yue, S. Zhao, P. Lü, Q. Chang, and H. Ru, “Synthesis and properties of hot pressed B4C–TiB2 ceramic composite,” Mater. Sci. Eng. A, No. 527, 7215–7219 (2010).

  29. M.V. Zamula, V.T. Varchenko, S.A. Umerova, O.B. Zgalat-Lozinskii, and A.V. Ragulya, “Friction and wear of the TiB2–30 wt.% B4C composite consolidated in spark plasma sintering,” Powder Metall. Met. Ceram., 55, No. 9–10, 567–573 (2017).

    Article  CAS  Google Scholar 

  30. H. Itoh, Y. Tsunekawa, S. Tago, and H. Iwahara, “Synthesis and sinterability of composite powder of the B4C–TiB2 system,” J. Alloys Compd., No. 191, 191–195 (1993).

  31. K. Iizumi, N. Yoshikawa, K. Kudaka, and S. Okada, “Sintering of chromium borides synthesized by solidstate reaction between metallic chromium and amorphous boron,” Powder Met., No. 46, 710–714 (1999).

  32. K. Iizumi, G. Shikada, K. Kudaka, and S. Okada, “Sintering of Cr1–xMoxB2 ceramics,” Powder Met., No. 44, 222–226 (1997).

  33. S.S. Ordanyan and A.I. Dmitriev, “Reaction in the B4C–B2Cr system,” in: P. Villars, A. Prince, and H. Okamoto (eds.), Handbook of Ternary Alloy Phase Diagrams, ASM International, OH, USA (1995), Vol. 10, p. 5327.

  34. G.N. Makarenko, V.B. Fedorus, S.P. Gordienko, V.M. Vereshchak, E.V. Marek, and K.F. Chernysheva, “Interaction of boron carbide with oxides of metals of the fourth period,” Powder Metall. Met. Ceram., 34, No. 9–10, 496–499 (1996).

    Article  Google Scholar 

  35. D.Yu. Kovalev, V.I. Ponomarev, S.V. Konovalikhin, V.I. Vershinnikov, and I.D. Kovalev, “Effect of synthesis conditions for boron carbide on its structural parameters,” Izv. Vuz. Poroshk. Metall. Funk. Pokr., No. 3, 18–24 (2015).

  36. D. Gosset and M. Colin, “Boron carbides of various compositions: An improved method for X-rays characterization,” J. Nucl. Mater., No. 183, 161–173 (1991).

  37. M.V. Reshetniak and O.V. Sobol, “Enhanced analysis of the structure and substructural characteristics of nanocrystalline condensed and bulk materials of the quasi-binary system W2B5–TiB2 using the X-ray diffraction data processing program New Profile,” Phys. Surf. Eng., 6, No. 3–4, 180–188 (2008).

    Google Scholar 

  38. A. Moradkhani, H. Baharvandib, M. Tajdari, H. Latifi, and J. Martikainen, “Determination of fracture toughness using the area of micro-crack tracks left in brittle materials by Vickers indentation test,” J. Adv. Ceram., 2, No. 1, 87–102 (2013).

    Article  CAS  Google Scholar 

  39. T.M. Kutran, V.V. Kovalchuk, H.Yu. Borodianska, and A.V. Ragulya, Charge for Producing High- Strength Boron Carbide Parts [in Ukrainian], Utility Patent U201911251 (2020).

  40. S. Yamada, K. Hirao, Y. Yamauchi, and S. Kanzaki, “B4C–CrB2 composites with improved mechanical properties,” J. Eur. Ceram. Soc., 23, 561–565 (2003).

    Article  CAS  Google Scholar 

  41. L. Jun, L. Lisheng, X. Shuang, Z. Jinyong, and W. Yuami, “The effects of carbon content on the anisotropic deformation mechanism of boron carbide,” Materials, 61, No. 10, 2–16 (2018).

    Google Scholar 

  42. V. Milman and M.C. Warren, “Elastic properties of TiB2 and MgB2,” J. Phys. Condens. Matter, No. 13, 5585–5595 (2001).

Download references

Acknowledgments

The authors are grateful to the Presidium of the National Academy of Sciences of Ukraine (NASU) for supporting the research within the Third Departmental Project under the Target Research Program of the NASU Department for Physical and Technical Problems in Materials Science (Code 6541230, Promising Structural and Functional Materials with Long Service Life and Fundaments of Their Production, Connection, and Processing, State Registration Number 0118U002194 (2018-2019)).

The authors also thank Mykola Skoryk, Head of the Nanomedtech Electron Microscopy Laboratory, for studies using SEM methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yu. Borodianska.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 61, Nos. 9–10 (547), pp. 46–66, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutran, T.M., Zamula, M.V., Pokhylko, B.A. et al. Reactive Synthesis of B4C–CrB2, B4C–TiB2, AND B4C–TiCrB2 Heterophase Ceramics by Spark Plasma Sintering. Powder Metall Met Ceram 61, 522–540 (2023). https://doi.org/10.1007/s11106-023-00342-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-023-00342-z

Keywords

Navigation