Skip to main content
Log in

Ice-Water Phase Transition on a Substrate

  • Research Articles
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we construct and study a model of phase transition in a system of two phases (liquid and ice) and three media, namely, water, a piece of ice, and a nonmelting solid substrate. Namely, the melting-crystallization process is considered in the problem of water flow along a small ice irregularity (such as a frozen drop) on a flat substrate for large Reynolds numbers. The results of numerical simulation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. V. Ya. Neiland, “Theory of Laminar Boundary Layer Separation in Supersonic Flow”, Fluid Dynam., 4 (1969), 33–35.

    MATH  Google Scholar 

  2. K. Stewartson and P. G. Williams, “Self-Induced Separation”, Proc. Roy. Soc. London A, 312 (1969), 181–206.

    Article  ADS  MATH  Google Scholar 

  3. F. T. Smith, “Laminar Flow Over a Small Hump on Flat Plate”, J. Fluid Mech., 57 (1973), 803–824.

    Article  ADS  MATH  Google Scholar 

  4. V. G. Danilov and M. V. Makarova, “Asymptotic and Numerical Analysis of the Flow Around a Plate with Small Periodic Irregularities”, Russ. J. Math. Phys., 2:1 (1994), 49–59.

    MathSciNet  MATH  Google Scholar 

  5. V. G. Danilov and R. K. Gaydukov, “Double-Deck Structure of the Boundary Layer in Problems of Flow Around Localized Perturbations on a Plate”, Math Notes, 98 (2015), 561–571.

    Article  MATH  Google Scholar 

  6. R. K. Gaydukov, “Double-Deck Structure in the Fluid Flow Problem over Plate with Small Irregularities of Time-Dependent Shape”, Eur. J. Mech. B Fluids, 89 (2021), 401–410.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. R. Yapalparvi, “Double-Deck Structure Revisited”, Eur. J. Mech. B Fluids, 31 (2012), 53–70.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. R. K. Gaydukov and V. G. Danilov, “Multi-Deck Structures in Problems of Flow Around Surfaces with Small Periodic Perturbations”, XII All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics: a collection of papers in 4 volumes, 2: Mechanics of liquid and gas, 92–94 (RIC BashGU, 2019), in Russian.

    Google Scholar 

  9. R. K. Gaydukov, V. G. Danilov, and A. V. Fonareva, “Modeling of Melting-Freezing of Ice in the Problem of Fluid Flow Around a Small Irregularity”, Fluid Dynam., (2022, in Print).

    Google Scholar 

  10. G. Caginalp, “An Analysis of a Phase Field Model of a Free Boundary”, Arch. Ration. Mech. Anal., 92 (1986), 205–245.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Caginalp, “Stefan and Hele-Shaw Type Models as Asymptotic Limits of the Phase-Field Equations”, Phys. Rev. A, 39:11 (1989), 5887–5896.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A. M. Meirmanov, The Stefan Problem, De Gruyter, 1992.

    Book  MATH  Google Scholar 

  13. H. M. Soner, “Convergence of the Phase-Field Equations to the Mullins-Sekerka Problem with Kinetic Undercooling”, Arch. Ration. Mech. Anal., 131 (1995), 139–197.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. I. Plotnikov and V. N. Starovoitov, “The Stefan Problem with Surface Tension as a Limit of the Phase Field Model”, Differ. Equ., 29:3 (1993), 395–404.

    MathSciNet  MATH  Google Scholar 

  15. V. G. Danilov, G. A. Omel’yanov, and E. V. Radkevich, “Hugoniot-Type Conditions and Weak Solutions to the Phase-Field System”, Eur. J. Appl. Math., 10:1 (1999), 55–77.

    Article  MathSciNet  MATH  Google Scholar 

  16. V. G. Danilov, G. A. Omel’yanov, and E. V. Radkevich, “Justification of Asymptotics of Solutions of the Phase-Field Equations and a Modified Stefan Problem”, Sb. Math., 186:12 (1995), 1753–1771.

    Article  MathSciNet  MATH  Google Scholar 

  17. V. G. Danilov, G. A. Omel’yanov, and E. V. Radkevich, “Asymptotic Behavior of the Solution of a Phase Field System, and a Modified Stefan Problem”, Differ. Equ., 31:3 (1995), 446–454.

    MathSciNet  MATH  Google Scholar 

  18. V. G. Danilov, G. A. OmelтАЩyanov, and V. M. Shelkovich, “Weak Asymptotics Method and Interaction of Nonlinear Waves”, Asymptotic Methods for Wave and Quantum Problems, 208 (2003), 33–165.

    MathSciNet  MATH  Google Scholar 

  19. V. G. Danilov, “On the Relation Between the Maslov–Whitham Method and the Weak Asymptotics Method”, Banach Center Publ., 88 (2010), 55–65.

    Article  MathSciNet  MATH  Google Scholar 

  20. V. I. Mazhukin, “Kinetics and Dynamics of Phase Transformations in Metals under Action of Ultra-Short High-Power Laser Pulses”, Laser Pulses: Theory, Technology, and Applications, (2012).

    Google Scholar 

  21. V. G. Danilov, V. P. Maslov, and K. A. Volosov, Mathematical Modeling of Heat and Mass Transfer Processes, Kluwer, 1995.

    Book  MATH  Google Scholar 

  22. I. K. Kikoin, Tables of Physical Quantities, Atomizdat, 1976, in Russian.

    Google Scholar 

  23. I. S. Grigoriev and E. Z. Meilikhov, Physical Quantities: Handbook, Energoatomizdat, 1991, in Russian.

    Google Scholar 

  24. V. V. Kuznetsov and V. F. Ust-Kachkintsev, Physical and Colloidal Chemistry, Vysshaya shkola, 1976, in Russian.

    Google Scholar 

  25. R. Fernandez and A. J. Barduhn, “The Growth Rate of Ice Crystals”, Desalination, 3 (1967), 330–342.

    Article  Google Scholar 

  26. L. Makkonen, “On the Methods to Determine Surface Energies”, Langmuir, 16:20 (2000), 7669–7672.

    Article  Google Scholar 

  27. P. J. de Gennes, “Wetting: Statics and Dynamics”, Rev. Modern Phys., 57 (1985), 827–863.

    Article  ADS  MathSciNet  Google Scholar 

  28. V. G. Danilov and R. K. Gaydukov, “Asymptotic Multiscale Solutions to Navier–Stokes Equations with Fast Oscillating Perturbations in Boundary Layers”, Russ. J. Math. Phys., 29:4 (2022), 431–455.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation under grant No. 22-21-00186, https://rscf.ru/project/22-21-00186/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Danilov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, V.G., Gaydukov, R.K. Ice-Water Phase Transition on a Substrate. Russ. J. Math. Phys. 30, 165–175 (2023). https://doi.org/10.1134/S1061920823020036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920823020036

Navigation