Skip to main content
Log in

Effect of the Hydride and Carbide Phases of Palladium Nanoparticles on the Vibration Frequencies of Adsorbed Surface Molecules

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Palladium-based materials, including nanoparticles, are widely used in the petrochemical, pharmaceutical, automotive, and other industries. The hydride, carbide, and oxide phases of palladium formed during the hydrogenation or oxidation reactions of hydrocarbons significantly affect the catalytic properties of the catalyst. Based on theoretical calculations performed by the density functional theory (DFT) method, the effect of Pd–Pd interatomic distances and the presence of carbon atoms occupying octahedral voids in the fcc lattice of palladium on the vibrational frequencies of adsorbed hydrocarbons represented by ethylidene is shown. Theoretical research is supported by experimental data of infrared (IR) diffuse reflectance Fourier-transform spectroscopy (DRIFTS) collected in situ during the formation of carbide and hydride phases of palladium in commercial Pd/Al2O3 nanocatalyst under the influence of ethylene and hydrogen. The proposed approach can be used to develop new methods for IR spectra analysis leading to the quantitative diagnostics of structural changes in palladium during various catalytic reactions in the in situ mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Bond, G., Dowden, D., and Mackenzie, N., The selective hydrogenation of acetylene, Trans. Faraday Soc., 1958, vol. 54, p. 1537.

    Article  CAS  Google Scholar 

  2. Borodziński, A. and Bond, G.C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, Part 2: Steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters, Catal. Rev., 2008, vol. 50, no. 3, p. 379.

    Article  Google Scholar 

  3. Teschner, D., Borsodi, J., Kis, Z., Szentmiklosi, L., Revay, Z., Knop-Gericke, A., Schlogl, R., Torres, D., and Sautet, P., Role of Hydrogen Species in Palladium-Catalyzed Alkyne Hydrogenation, J. Phys. Chem. C, 2010, vol. 114, no. 5, p. 2293.

    Article  CAS  Google Scholar 

  4. Teschner, D., Borsodi, J., Wootsch, A., Revay, Z., Havecker, M., Knop-Gericke, A., Jackson, S.D., and Schlögl, R., The roles of subsurface carbonband hydrogen in palladium-catalyzed alkyne hydrogenation, Science, 2008, vol. 320, no. 5872, p. 86.

    Article  CAS  PubMed  Google Scholar 

  5. Borodziński, A.and Bond, G.C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction, Catal. Rev., 2006, vol. 48, no. 2, p. 91.

    Article  Google Scholar 

  6. Molnár, Á., Sárkány, A., and Varga, M. Hydrogenation of carbon–carbon multiple bonds: chemo-, regio- and stereo-selectivity, J. Mol. Catal. A: Chem., 2001, vol. 173, no. 1, p. 185.

    Article  Google Scholar 

  7. Stahl, S.S., Palladium oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover, Angew. Chem., Int. Ed., 2004, vol. 43, no. 26, p. 3400.

    Article  CAS  Google Scholar 

  8. Groppo, E., Lazzarini, A., Carosso, M., Bugaev, A., Manzoli, M., Pellegrini, R., Lamberti, C., Banerjee, D., and Longo, A., Dynamic behavior of Pd/P4VP catalyst during the aerobic oxidation of 2-propanol: A simultaneous SAXS/XAS/MS operando study, ACS Catal., 2018, vol. 8. C. 6870.

  9. Armbrüster, M., Behrens, M., Cinquini, F., Föttinger, K., G Grin, Y., Haghofer, A., Klotzer, B., Knop-Gericke, A., Lorenz, H., Ota, A., Penner, S., Prinz, J., Rameshan, C., Revay, Z., Rosenthal, D., et al., How to control the selectivity of palladium-based catalysts in hydrogenation reactions: The Role of subsurface chemistry, ChemCatChem, 2012, vol. 4, no. 8, p. 1048.

    Article  Google Scholar 

  10. Ma, H., Chen, M., Sun, L., Feng, H., Zhan, X., and Xie, Y., Kinet. Catal., 2021, vol. 62, no. 6, p. 750.

    Article  CAS  Google Scholar 

  11. Burch, R. and Loader, P.K., Investigation of Pt/Al2O3 and Pd/Al2O3 catalysts for the combustion of methane at low concentrations, Appl. Catal., B, 1994, vol. 5, nos. 1–2, p. 149–164.

    Article  CAS  Google Scholar 

  12. Losch, P., Huang, W., Vozniuk, O., Goodman, E.D., Schmidt, W., and Cargnello, M., Modular Pd/Zeolite composites demonstrating the key role of support hydrophobic/hydrophilic character in methane catalytic combustion, ACS Catal., 2019, vol. 9, no. 6, p. 4742.

    Article  CAS  Google Scholar 

  13. Ma, J., Lou, Y., Cai, Y., Zhao, Z., Wang, L., Zhan, W., Guo, Y., and Guo, Y., The relationship between the chemical state of Pd species and the catalytic activity for methane combustion on Pd/CeO2, Catal. Sci. Technol., 2018, vol. 8, no. 10, p. 2567 .

    Article  CAS  Google Scholar 

  14. Padilla, J.M., Del Angel, G., and Navarrete, J., Improved Pd/γ-Al2O3–Ce catalysts for benzene combustion, Catal. Today, 2008, vols. 133–135, p. 541.

    Article  Google Scholar 

  15. Skorynina, A.A., Tereshchenko, A.A., Usoltsev, O.A., Bugaev, A.L., Lomachenko, K.A., Guda, A.A., Groppo, E., Pellegrini, R., Lamberti, C., and Soldatov, A.V., Time-dependent carbide phase formation in palladium nanoparticles, Radiat. Phys. Chem., 2020, vol. 175, p. 108079.

    Article  CAS  Google Scholar 

  16. Bugaev, A.L., Guda, A.A., Pankin, I.A., Groppo, E., Pellegrini, R., Longo, A., Soldatov, A.V., and Lamberti, C., The role of palladium carbides in the catalytic hydrogenation of ethylene over supported palladium nanoparticles, Catal. Today, 2019, vol. 336, p. 40.

    Article  CAS  Google Scholar 

  17. Bugaev, A.L., Zabilskiy, M., Skorynina, A.A., Usoltsev, O.A., Soldatov, A.V., and van Bokhoven, J.A., In situ formation of surface and bulk oxides in small palladium nanoparticles, Chem. Commun., 2020, vol. 56, no. 86, p. 13097.

    Article  CAS  Google Scholar 

  18. Bennett, P.A. and Fuggle, J.C., Electronic structure and surface kinetics of palladium hydride studied with x-ray photoelectron spectroscopy and electron-energy-loss spectroscopy, Phys. Rev. B, 1982, vol. 26, no. 11, p. 6030.

    Article  CAS  Google Scholar 

  19. Guda, A.A., Guda, S.A., Lomachenko, K.A., Soldatov, M.A., Pankin, I.A., Soldatov, A.V., Braglia, L., Bugaev, A.L., Martini, A., Signorile, M., Groppo, E., Piovano, A., Borfecchia, E., and Lamberti, C., Quantitative structural determination of active sites from in situ and operando XANES spectra: From standard ab initio simulations to chemometric and machine learning approaches, Catal. Today, 2019, vol. 336, p. 3.

    Article  CAS  Google Scholar 

  20. Usoltsev, O.A., Pnevskaya, A.Y., Kamyshova, E.G., Tereshchenko, A.A., Skorynina, A.A., Zhang, W., Yao, T., Bugaev, A.L., and Soldatov, A.V., Dehydrogenation of ethylene on supported palladium nanoparticles: A double view from metal and hydrocarbon sides, Nanomaterials, 2020, vol. 10, no. 9, p. 1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bugaev, A.L., Guda, A.A., Lazzarini, A., Lomachenko, K.A., Groppo, E., Pellegrini, R., Piovano, A., Emerich, H., Soldatov, A.V., Bugaev, L.A., Dmitriev, V.P., van Bokhoven, J.A., and Lamberti, C., In situ formation of hydrides and carbides in palladium catalyst: when XANES is better than EXAFS and XRD, Catal. Today, 2017, vol. 283, p. 119.

    Article  CAS  Google Scholar 

  22. Avery, N.R., Infrared spectra of olefins adsorbed on silica supported palladium, J. Catal., 1970, vol. 19, no. 1, p. 15.

    Article  CAS  Google Scholar 

  23. Ustyugov, A.V., Korypaeva, V.V., Obeidat, Z.Z., Putin, A.Yu., Shvarts, A.L., and Bruk, L.G., Kinet. Catal., 2022, vol. 63, no. 2, p. 226.

    Article  CAS  Google Scholar 

  24. Zhang, Y., Cai, Y., Guo, Y., Wang, H., Wang, L., Lou, Y., Guo, Y., Lu, G., and Wang, Y., The effects of the Pd chemical state on the activity of Pd/Al2O3 catalysts in CO oxidation, Catal. Sci. Technol., 2014, vol. 4, no. 11, p. 3973.

    Article  CAS  Google Scholar 

  25. Aleksandrov, H.A., Neyman, K.M., Hadjiivanov, K.I., and Vayssilov, G.N., Can the state of platinum species be unambiguously determined by the stretching frequency of an adsorbed CO probe molecule?, Phys. Chem. Chem. Phys., 2016, vol. 18, no. 32, p. 22108.

    Article  CAS  PubMed  Google Scholar 

  26. Tillekaratne, A., Simonovis, J.P., and Zaera, F., Ethylene hydrogenation catalysis on Pt(111) single-crystal surfaces studied by using mass spectrometry and in situ infrared absorption spectroscopy, Surf. Sci., 2016, vol. 652, p. 134.

    Article  CAS  Google Scholar 

  27. Zaera, F., New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions, Chem. Soc. Rev., 2014, vol. 43, no. 22, p. 7624.

    Article  CAS  PubMed  Google Scholar 

  28. Zaera, F., Janssens, T.V.W., and Öfner, H., Reflection absorption infrared spectroscopy and kinetic studies of the reactivity of ethylene on Pt(111) surfaces, Surf. Sci., 1996, vol. 368, nos. 1–3, p. 371.

    Article  CAS  Google Scholar 

  29. Agostini, G., Groppo, E., Piovano, A., Pellegrini, R., Leofanti, G., and Lamberti, C., Preparation of supported Pd catalysts: from the Pd precursor solution to the deposited Pd2+ phase, Langmuir, 2010, vol. 26, no. 13, p. 11204.

    Article  CAS  PubMed  Google Scholar 

  30. Pnevskaya, A.Y., Bugaev, A.L., Tereshchenko, A.A., and Soldatov, A.V., Experimental and theoretical investigation of ethylene and 1-MCP binding sites in HKUST-1 metal-organic framework, J. Phys. Chem. C, 2021, vol. 125, no. 40, p. 22295.

    Article  CAS  Google Scholar 

  31. Perdew, J.P., Accurate density functional for the energy: Real-space cutoff of the gradient expansion for the exchange hole, Phys. Rev. Lett., 1985, vol. 55, no. 16, p. 1665.

    Article  CAS  PubMed  Google Scholar 

  32. Kresse, G. and Furthmüller, J., Efficincy of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 1996, vol. 6, p. 15.

    Article  CAS  Google Scholar 

  33. Kresse, G. and Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, vol. 54, no. 16, p. 11169.

    Article  CAS  Google Scholar 

  34. Paier, J., Hirschl, R., Marsman, M., and Kresse, G., The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set, J. Chem. Phys., 2005, vol. 122, no. 23, p. 234102.

    Article  PubMed  Google Scholar 

  35. Paier, J., Marsman, M., Hummer, K., Kresse, G., Gerber, I.C., and Angyan, J.G., Screened hybrid density functionals applied to solids, J. Chem. Phys., 2006, vol. 124, no. 15, p. 154709.

    Article  CAS  PubMed  Google Scholar 

  36. Evarestov, R.A. and Smirnov, V.P., Modification of the Monkhorst-Pack special points meshes in the Brillouin zone for density functional theory and Hartree–Fock calculations, Phys. Rev. B, 2004, vol. 70, no. 23, p. 233101.

    Article  Google Scholar 

  37. Pack, J.D. and Monkhorst, H.J., Special points for Brillouin-zone integrations, Phys. Rev. B, 1977, vol. 16, no. 4, p. 1748.

    Article  Google Scholar 

  38. Shewchuk, J.R., An introduction to the conjugate gradient method without the agonizing pain, in An introduction to the conjugate gradient method without the agonizing pain, Carnegie Mellon University, 1994.

    Google Scholar 

  39. Steihaug, T., The conjugate gradient method and trust regions in large scale optimization, SIAM J. Numer. Anal., 1983, vol. 20, no. 3, p. 626.

    Article  Google Scholar 

  40. Bugaev, A.L., Usoltsev, O.A., Guda, A.A., Lomachenko, K.A., Pankin, I.A., Rusalev, Y.V., Emerich, H., Groppo, E., Pellegrini, R., Soldatov, A.V., van Bokhoven, J.A., and Lamberti, C., Palladium carbide and hydride formation in the bulk and at the surface of palladium nanoparticles, J. Phys. Chem. C, 2018, vol. 122, no. 22, p. 12029.

    Article  CAS  Google Scholar 

  41. Szanyi, J., Kuhn, W., and Goodman, D., CO adsorption on Pd(111) and Pd(100): Low and high pressure correlations, J. Vac. Sci. Technol. A, 1993, vol. 11, p. 1969.

    Article  CAS  Google Scholar 

  42. Tereshchenko, A., Guda, A., Polyakov, V., Rusalev, Y., Butova, V., and Soldatov, A., Pd nanoparticle growth monitored by DRIFT spectroscopy of adsorbed CO, Analyst, 2020, vol. 145, no. 23, p. 7534.

    Article  CAS  PubMed  Google Scholar 

  43. Zeinalipour-Yazdi, C.D., Willock, D.J., Thomas, L., Wilson, K., and Lee, A.F., CO adsorption over Pd nanoparticles: A general framework for IR simulations on nanoparticles, Surf. Sci., 2016, vol. 646, p. 210.

    Article  CAS  Google Scholar 

  44. Bugaev, A.L., Guda, A.A., Lomachenko, K.A., Shapovalov, V.V., Lazzarini, A., Vitillo, J.G., Bugaev, L.A., Groppo, E., Pellegrini, R., Soldatov, A.V., van Bokhoven, J.A., and Lamberti, C., Core–Shell structure of palladium hydride nanoparticles revealed by combined X-ray absorption spectroscopy and X-ray diffraction, J. Phys. Chem. C, 2017, vol. 121, no. 33, p. 18202.

    Article  CAS  Google Scholar 

  45. Setayandeh, S.S., Gould, T., Vaez, A., McLennan, K., Armanet, N., and Gray, E., First-principles study of the atomic volume of hydrogen in palladium, J. Alloys Compd., 2021, vol. 864, p. 158713.

    Article  CAS  Google Scholar 

  46. Bugaev, A.L., Usoltsev, O.A., Guda, A.A., Lomachenko, K.A., Brunelli, M., Groppo, E., Pellegrini, R., Soldatov, A.V., and van Bokhoven, J., Hydrogenation of ethylene over palladium: Evolution of the catalyst structure by operando synchrotron-based techniques, Faraday Discuss., 2021, vol. 229, p. 197.

    Article  CAS  PubMed  Google Scholar 

  47. Bugaev, A.L., Usoltsev, O.A., Lazzarini, A., Lomachenko, K.A., Guda, A.A., Pellegrini, R., Carosso, M., Vitillo, J.G., Groppo, E., van Bokhoven, J.A., Soldatov, A.V., and Lamberti, C., Time-resolved operando studies of carbon supported Pd nanoparticles under hydrogenation reactions by X-ray diffraction and absorption, Faraday Discuss., 2018, vol. 208, p. 187.

    Article  CAS  PubMed  Google Scholar 

  48. Bugaev, A.L., Guda, A.A., Lomachenko, K.A., Kamyshova, E.G., Soldatov, M.A., Kaur, G., Øien-Ødegaard, S., Braglia, L., Lazzarini, A., Manzoli, M., Bordiga, S., Olsbye, U., Lillerud, K.P., Soldatov, A.V., and Lamberti, C., Operando study of palladium nanoparticles inside UiO-67 MOF for catalytic hydrogenation of hydrocarbons, Faraday Discuss., 2018, vol. 208, p. 287.

    Article  CAS  PubMed  Google Scholar 

  49. Bugaev, A.L., Guda, A.A., Pankin, I.A., Groppo, E., Pellegrini, R., Longo, A., Soldatov, A.V., and Lamberti, C., Operando X-ray absorption spectra and mass spectrometry data during hydrogenation of ethylene over palladium nanoparticles, Data Brief., 2019, vol. 24, p. 103954.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yudanov, I.V., Neyman, K.M., and Rösch, N., Density functional study of Pd nanoparticles with subsurface impurities of light element atoms, Phys. Chem. Chem. Phys., 2004, vol. 6, no. 1, p. 116.

    Article  CAS  Google Scholar 

  51. Mason, S.E., Grinberg, I., and Rappe, A.M., Adsorbate–adsorbate interactions and chemisorption at different coverages studied by accurate ab initio calculations:  CO on Transition metal surfaces, J. Phys. Chem. B, 2006, vol. 110, no. 8, p. 3816.

    Article  CAS  PubMed  Google Scholar 

  52. Tereshchenko, A., Pashkov, D., Guda, A., Guda, S., Rusalev, Y., and Soldatov, A., Adsorption sites on Pd Nanoparticles unraveled by machine-learning potential with adaptive sampling, Molecules, 2022, vol. 27, no. 2, p. 357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lansford, J.L. and Vlachos, D.G., Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials, Nat. Commun., 2020, vol. 11, no. 1, p. 1513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kappers, M.J. and van der Maas, J.H., Correlation between CO frequency and Pt coordination number. A DRIFT study on supported Pt catalysts, Catal. Lett., 1991, vol. 10, no. 5, p. 365.

    Article  CAS  Google Scholar 

  55. Koroteev, Yu.M., Gimranova, O.V., and Chernov, I.P., Phys. Solid Stat, 2011, vol. 53, no. 5, p. 896.

    Article  CAS  Google Scholar 

  56. Teschner, D., Revay, Z., Borsodi, J., Havecker, M., Knop-Gericke, A., Schlogl, R., Milroy, D., Jackson, S.D., Torres, D., and Sautet, P., Understanding palladium hydrogenation catalysts: when the nature of the reactive molecule controls the nature of the catalyst active phase, Angew. Chem., Int. Ed., 2008, vol. 47, no. 48, p. 9274.

    Article  CAS  Google Scholar 

  57. Lee, A.F., Naughton, J.N., Liu, Z., and Wilson, K., High-pressure XPS of crotyl alcohol selective oxidation over metallic and oxidized Pd(111), ACS Catal., 2012, vol. 2, no. 11, p. 2235.

    Article  CAS  Google Scholar 

  58. Usoltsev, O.A., Bugaev, A.L., Guda, A.A., Guda, S.A., and Soldatov, A.V., How much structural information could be extracted from XANES spectra for palladium hydride and carbide nanoparticles, J. Phys. Chem. C, 2022. https://doi.org/10.1021/acs.jpcc.1c09420

  59. Meza, RamirezC.A., Greenop, M., Ashton, L., and Rehman, I.U., Applications of machine learning in spectroscopy, Appl. Spectrosc. Rev., 2021, vol. 56, nos. 8‒10, p. 733.

    Article  Google Scholar 

  60. Guda, A.A., Guda, S.A., Martini, A., Kravtsova, A.N., Algasov, A., Bugaev, A., Kubrin, S.P., Guda, L.V., Šot, P., van Bokhoven, J.A., Copéret, C., and Soldatov, A.V., Understanding X-ray absorption spectra by means of descriptors and machine learning algorithms, NPJ Comput. Mater., 2021, vol. 7, no. 1, p. 203.

    Article  CAS  Google Scholar 

  61. Martini, A., Guda, S.A., Guda, A.A., Smolentsev, G., Algasov, A., Usoltsev, O., Soldatov, M.A., Bugaev, A., Rusalev, Y., Lamberti, C., and Soldatov, A.V., PyFitit: The software for quantitative analysis of XANES spectra using machine-learning algorithms, Comput. Phys. Commun., 2020, vol. 250, p. 107064.

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out with the financial support of the Russian Ministry of Education and Science (Agreement no. 075-15-2021-1389 dated October 13, 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Usoltsev.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Abbreviations and notation: IR, infrared; FTIR, Fourier-transform IR spectroscopy; DRIFTS, diffuse reflectance infrared Fourier-transform spectroscopy; DFT, density functional theory; fcc, face-centered cubic (lattice); XPS, X-ray photoelectron spectroscopy; XANES, X-ray absorption near-edge structure; EXAFS, extended X-ray absorption fine structure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usoltsev, O.A., Protsenko, B.O., Pnevskaya, A.Y. et al. Effect of the Hydride and Carbide Phases of Palladium Nanoparticles on the Vibration Frequencies of Adsorbed Surface Molecules. Kinet Catal 64, 191–200 (2023). https://doi.org/10.1134/S0023158423020088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423020088

Keywords:

Navigation