Skip to main content
Log in

Ammonia Decomposition over Cobalt-Based Silica-Supported Fischer-Tropsch Synthesis Catalysts

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Decomposition of ammonia over silica-supported cobalt catalysts for Fischer–Tropsch synthesis has been studied at a pressure of 0.1 MPa, a gas hourly space velocity in the range of 1000–6000 h1, and a temperature in the range of 400–650°C in a tubular fixed bed reactor in a flow-through mode. It was found that silica-supported cobalt catalysts for hydrocarbons synthesis via the Fischer–Tropsch protocol also exhibit high activity in ammonia decomposition. Both the activity and hydrogen performance decrease in the series: Co-Ru/SiO2 > Co-Al2O3/SiO2 > Ru/SiO2 > Co-Al2O3/SiO2(35%)/ZSM-5(30%)/Al2O3(35%). The relatively low values of effective activation energies estimated for all catalysts indicate that the reaction can proceed with high conversion at moderate temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. York, R. and Bell, S.E., Energy Res. Soc. Sci., 2019, vol. 51, p. 40.

    Article  Google Scholar 

  2. Lucentini, I., Garcia, X., Vendrell, X., and Llorca, J., Ind. Eng. Chem. Res., 2021, vol. 60, no. 51, p. 18560.

    Article  CAS  Google Scholar 

  3. Hameer, S. and Niekerk, J.L., Int. J. Energy Res., 2015, vol. 39, no. 9, p. 1179.

    Article  Google Scholar 

  4. Chang, F., Gao, W., Guo, J., and Chen, P., Adv. Mater., 2021, vol. 33, no. 50, p. 2005721.

    Article  CAS  Google Scholar 

  5. Mukherjee, S., Devaguptapu, S.V., Sviripa, A., Lund, C.R., and Wu, G., Appl. Catal., B, 2018, vol. 226, p. 162.

    Article  CAS  Google Scholar 

  6. Silverstein, R., Eliezer, D., and Glam, B., Energy Proc., 2017, vol. 107, p. 199.

    Article  CAS  Google Scholar 

  7. Kobayashi, N., Koyama, M., Kobayashi, K., Hojo, T., and Akiyama, E., Mater. Transact., 2022, vol. 63, no. 2, p. 247.

    Article  CAS  Google Scholar 

  8. Robertson, I.M., Sofronis, P., Nagao, A., Martin, M.L., Wang, S., Gross, D.W., and Nygren, K.E., Metall. Mater. Transact. A, 2015, vol. 46, no. 6, p. 1085.

    Article  CAS  Google Scholar 

  9. Hwang, H.T. and Varma, A., Curr. Opin. Chem. Eng., 2014, vol. 5, p. 42.

    Article  Google Scholar 

  10. Fateev, V.N., Alekseeva, O.K., Korobtsev, S.V., Seregina, E.A., Fateeva, T.V., Grigor’ev, A.S., and Aliev, A.Sh., Chemical Probl., 2018, no. 4, p. 453.

  11. https://ar2020.phosagro.ru/download/full-reports/ ar_ru_annual-report_pages_phosagro_2020.pdf. Cited September 09, 2022.

  12. Lamb, K.E., Dolan, M.D., and Kennedy, D.F., Int. J. Hydrogen Energy, 2019, vol. 44, no. 7, p. 3580.

    Article  CAS  Google Scholar 

  13. Tarasov, B.P., Lototskii, M.V., and Yartys’, V.A., Russ. J. Gen. Chem., 2006, vol. 77, no. 6, p. 694.

    Article  Google Scholar 

  14. Le, T.A., Do, Q.C., Kim, Y., Kim, T.W., and Chae, H.J., Korean J. Chem. Eng., 2021, vol. 38, no. 6, p. 1087.

    Article  CAS  Google Scholar 

  15. Lendzion-Bielun, Z., Narkiewicz, U., and Arabczyk, W., Materials, 2013, vol. 6, no. 6, p. 2400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, J., Xu, H., Ge, Q., and Li, W., Catal. Commun. 2006, vol. 7, no. 3, p. 148.

    Article  CAS  Google Scholar 

  17. Li, G., Yu, X., Yin, F., Lei, Z., Zhang, H., and He, X., Catal. Today, 2022, vol. 402, p. 45.

    Article  CAS  Google Scholar 

  18. Podila, S., Driss, H., Zaman, S.F., Alhamed, Y.A., AlZahrani, A.A., Daous, M.A., and Petrov, L.A., J. Mol. Catal. A: Chem., 2016, vol. 414, p. 130.

    Article  CAS  Google Scholar 

  19. Choudhary, T.V., Sivadinarayana, C., and Goodman, D.W., Catal. Lett., 2001, vol. 72, no. 3, p. 197.

    Article  CAS  Google Scholar 

  20. Li, X.K., Ji, W.J., Zhao, J., Wang, S.J., and Au, C.T., J. Catal., 2005, vol. 236, no. 2, p. 181.

    Article  CAS  Google Scholar 

  21. Liu, H., Wang, H., Shen, J., Sun, Y., and Liu, Z., Appl. Catal., A, 2008, vol. 337, no. 2, p. 138.

  22. Ertl, G., Knozinger, H., and Weitkamp, J., Weinheim: VCH, 1997, vol. 2, p. 427.

  23. Bell, T.E., Top. Catal., 2016, vol. 59, no. 15, p. 1438.

    Article  CAS  Google Scholar 

  24. Lendzion-Bieluń, Z., Pelka, R., and Arabczyk, W., Catal. Lett., 2009, vol. 129, no. 1, p. 119.

    Article  Google Scholar 

  25. Gu, Y.Q., Jin, Z., Zhang, H., Xu, R.J., Zheng, M.J., Guo, Y.M., Song, Q.S., and Jia, C.J., J. Mater. Chem. A, 2015, vol. 3, no. 33, p. 17172.

    Article  CAS  Google Scholar 

  26. Podila, S., Alhamed, Y.A., AlZahrani, A.A., and Petrov, L.A., Int. J. Hydrogen Energy, 2015, vol. 40, no. 45, p. 15411.

    Article  CAS  Google Scholar 

  27. Savost'yanov, A.P., Yakovenko, R.E., Sulima, S.I., Bakun, V.G., Narochnyi, G.B., Chernyshev, V.M., and Mitchenko, S.A., Catal. Today, 2017, vol. 279, p. 107.

    Article  CAS  Google Scholar 

  28. Yakovenko, R.E., Savost’yanov, A.P., Narochniy, G.B., Soromotin, V.N., Zubkov, I.N., Papeta, O.P., Svetogorov, R.D., and Mitchenko, S.A., Catal. Sci. Technol., 2020, vol. 10, p. 7613.

    Article  CAS  Google Scholar 

  29. Savost'yanov, A.P., Yakovenko, R.E., Narochnyi, G.B., Bakun, V.G., Sulima, S.I., Yakuba, E.S., and Mitchenko, S.A., Kinet. Catal., 2017, vol. 58, no. 1, p. 81.

    Article  CAS  Google Scholar 

  30. Yakovenko, R.E., Zubkov, I.N., Narochnyi, G.B., Papeta, O.P., Denisov, O.D., and Savost’yanov, A.P., Kinet. Catal., 2020, vol. 61, no. 2, p. 310.

    Article  CAS  Google Scholar 

  31. Yakovenko, R.E., Zubkov, I.N., Savost’yanov, A.P., Soromotin, V.N., Krasnyakova, T.V., Papeta, O.P., and Mitchenko, S.A., Kinet. Catal., 2021, vol. 62, no. 1, p. 172.

    Article  CAS  Google Scholar 

  32. Averbukh, A.Ya., Tumarkina, E.S., Mukhlenov, I.P., Kopylev, B.A, and Rumyantseva, E.S., Praktikum po obshchei khimicheskoi tekhnologii: Uchebnoe posobie dlya studentov vuzov (Workshop on General Chemical Technology: Textbook for University Students), Mukhlenov, I.P, Ed., Moscow: Vysshaya Shkola, 1979.

  33. Young, R.A., The Rietveld Method, Oxford: Oxford University, 1995, p. 298.

    Google Scholar 

  34. Schanke, D., Vada, S., Blekkan, E.A., Hilmen, A.M., Hoff, A., and Holmen, A., J. Catal., 1995, vol. 156, no. 1, p. 85.

    Article  CAS  Google Scholar 

  35. PDF-2. The powder diffraction file TM. International Center for Diffraction Data (ICDD). PDF-2 Release, 2012. http://www.icdd.com. 2014, no. (ICDD 42-1467).

  36. PDF-2. The powder diffraction file TM. International Center for Diffraction Data (ICDD). PDF-2 Release, 2012. http://www.icdd.com. 2014, no. 000-61-0765.

  37. PDF-2. The powder diffraction file TM. International Center for Diffraction Data (ICDD). PDF-2 Release, 2012. http://www.icdd.com. 2014, no. 010-75-0921.

  38. Lippens, B.K. and Steggerda, I.I., Aktivnaya okis' alyuminiya. Stroenie i svoistva adsorbentov i katalizatorov (Active Alumina. Structure and Properties of Adsorbents and Catalysts), Moscow: Mir, 1973.

  39. Lin, H.Y. and Chen, Y.W., Mater. Chem. Phys., 2004, vol. 85, no. 1, p. 171.

    Article  CAS  Google Scholar 

  40. Wong, L., Tang, L., Scarlett, N.V., Chiang, K., Patel, J., Burke, N., and Sage, V., Appl. Catal., A, 2017, vol. 537, p. 1.

  41. Wang, C., Liu, N., Zhang, C., Liu, X., Li, X., and Zhao, X.S., Appl. Surf. Sci., 2019, vol. 497, p. 143776.

    Article  CAS  Google Scholar 

  42. Li, J., Liu, Z., and Wang, R., J. Colloid Interface Sci., 2018, vol. 531, p. 204.

    Article  CAS  PubMed  Google Scholar 

  43. Bruce, L.A., Hoang, M., Hughes, A.E., and Turney, T.W., Appl. Catal., A, 1993, vol. 100, no. 1, p. 51.

  44. Prieto, G., Concepcion, P., Murciano, R., and Martínez, A., J. Catal., 2013, vol. 302, p. 37.

    Article  CAS  Google Scholar 

  45. Pei, Y., Ding, Y., Zhu, H., Zang, J., Song, X., Dong, W., Wang, T., and Lu, Y., Catal. Lett., 2014, vol. 144, no. 8, p. 1433.

    Article  CAS  Google Scholar 

  46. Steen, E., Sewell, G.S., Makhothe, R.A., Micklethwaite, C., Manstein, H., Lange, M., and O’Connor, C.T., J. Catal., 1996, vol. 162, no. 2, p. 220.

    Article  Google Scholar 

  47. Li, L., Zhu, Z.H., Yan, Z.F., Lu, G.Q., and Rintoul, L., Appl. Catal., A, 2007, vol. 320, p. 166.

  48. Su, Q., Gu, L., Yao, Y., Zhao, J., Ji, W., Ding, W., and Au, C.T., Appl. Catal., B, 2017, vol. 201, p. 451.

    Article  CAS  Google Scholar 

  49. Li, L., Zhu, Z.H., Lu, G.Q., Yan, Z.F., and Qiao, S.Z., Carbon, 2007, vol. 45, no. 1, p. 11.

    Article  CAS  Google Scholar 

  50. Zhang, H., Alhamed, Y.A., Al-Zahrani, A., Daous, M., Inokawa, H., Kojima, Y., and Petrov, L.A., Int. J. Hydrogen Energy, 2014, vol. 39, no. 31, p. 17573.

    Article  CAS  Google Scholar 

  51. Zhang, H., Alhamed, Y.A., Chu, W., Ye, Z., AlZahrani, A., and Petrov, L., Appl. Catal., A, 2013, vol. 464, p. 156.

  52. Podila, S., Driss, H., Zaman, S.F., Alhamed, Y.A., AlZahrani, A.A., Daous, M.A., and Petrov, L.A., J. Mol. Catal. A: Chem., 2016, vol. 414, p. 130.

    Article  CAS  Google Scholar 

  53. Podila, S., Driss, H., Zaman, S.F., Ali, A.M., Al-Zahrani, A.A., Daous, M.A., and Petrov, L.A., Int. J. Hydrogen Energy, 2017, vol. 42, no. 38, p. 24213.

    Article  CAS  Google Scholar 

  54. Khan, W.U., Alasiri, H.S., Ali, S.A., and Hossain, M.M., Chem. Rec., 2022, vol. 22, no. 7, p. e202200030.

    CAS  PubMed  Google Scholar 

  55. Zhang, Z.S., Fu, X.P., Wang, W.W., Jin, Z., Song, Q.S., and Jia, C.J., Sci. China Chem., 2018, vol. 61, no. 11, p. 1389.

    Article  CAS  Google Scholar 

  56. Torrente-Murciano, L., Hill, A.K., and Bell, T.E., Catal. Today, 2017, vol. 286, p. 131.

    Article  CAS  Google Scholar 

  57. Zhang, H., Alhamed, Y., Kojima, Y., Al-Zahrani, A.A., and Petrov, L.A., Comptes rendus de l’Acad’emie bulgare des Sciences, 2013, vol. 66, p. 519.

    CAS  Google Scholar 

  58. Zhang, J., Müller, J.O., Zheng, W., Wang, D., Su, D., and Schlögl, R., Nano Lett., 2008, vol. 8, no. 9, p. 2738.

    Article  CAS  PubMed  Google Scholar 

  59. Hu, X.C., Wang, W.W., Jin, Z., Wang, X., Si, R., and Jia, C.J., J. Energy Chem., 2019, vol. 38, p. 41.

    Article  Google Scholar 

  60. Lara-Garcia, H.A., Mendoza-Nieto, J.A., Pfeiffer, H., and Torrente-Murciano, L., Int. J. Hydrogen Energy, 2019, vol. 44, no. 57, p. 30062.

    Article  CAS  Google Scholar 

  61. Huang, C., Li, H., Yang, J., Wang, C., Hu, F., Wang, X., Lu, Z.H., Feng, G., and Zhang, R., Appl. Surf. Sci., 2019, vol. 478, p. 708.

    Article  CAS  Google Scholar 

  62. Li, G., Zhang, H., Yu, X., Lei, Z., Yin, F., and He, X., Int. J. Hydrogen Energy, 2022, vol. 47, no. 26, p. 12882.

    Article  CAS  Google Scholar 

  63. McCullough, K., Chiang, P.H., Jimenez, J.D., and Lauterbach, J.A., Materials, 2020, vol. 13, no. 8, p. 1869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Di Carlo, A., Vecchione, L., and Del Prete, Z., Int. J Hydrogen Energy, 2014, vol. 39, no. 2, p. 808.

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed within the framework of the strategic project “Scientific Innovation Cluster “Contract R&D Center”” of the Development Program at Platov South-Russian State Polytechnic University (NPI), in implementation of the program of strategic academic leadership “Priority-2030.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Mitchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Abbreviations and notation: FTS, Fischer–Tropsch synthesis; TPR, temperature-programmed reduction; SEM, scanning electron microscopy; EDA, energy dispersive microanalysis; XRD, X-ray diffraction analysis; CSR, coherent scattering region; GSV, gas space velocity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, R.E., Krasnyakova, T.V., Saliev, A.N. et al. Ammonia Decomposition over Cobalt-Based Silica-Supported Fischer-Tropsch Synthesis Catalysts. Kinet Catal 64, 180–190 (2023). https://doi.org/10.1134/S002315842302009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315842302009X

Keywords:

Navigation