Skip to main content
Log in

Regeneration of Rh/Ce0.75Zr0.25O2 – δ/θ-Al2O3/FeCrAl Catalyst after Autothermal Reforming of Diesel Fuel

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The formation of soot (coke) on the surface of a structured Rh/Ce0.75Zr0.25O2/Al2O3/FeCrAl catalyst in the course of autothermal reforming of diesel fuel into synthesis gas was studied. The SEM analysis revealed the formation of fibrous carbon particles of 5–50 µm in size on the catalyst surface. It was found that the process of coke formation occurred on the catalytic coating surface and caused no exfoliation and/or damage of the catalytic layer; the carbon deposits were readily oxidized during catalyst regeneration by oxygen or water vapor. Intense oxidation of soot with oxygen began at a temperature of 450°C; a major portion of carbon deposits was oxidized even before the reactor furnace reached an operating temperature of the autothermal reforming of diesel fuel (750°C). Water vapor also oxidized carbon deposits but less efficiently than oxygen. The catalyst regeneration with water vapor proceeded actively at a temperature of 750°C, and this fact indicated the possibility of catalyst self-regeneration in the autothermal reforming of diesel fuel, which is performed with an excess of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Badmaev, S.D., Belyaev, V.D., and Sobyanin, V.A., Kinet. Catal., 2022, vol. 63, p. 330.

    Article  CAS  Google Scholar 

  2. Gorlova, A.M., Simonov, P.A., Stonkus, O.A., Pakharukova, V.P., Snytnikov, P.V., and Potemkin, D.I., Kinet. Catal., 2021, vol. 62, no. 6, p. 812.

    Article  CAS  Google Scholar 

  3. Yusenko, M.V., Belyaev, V.D., Demin, A.K., Bronin, D.I., Salanov, A.N., Sobyanin, V.A., Snytnikov, P.V., and Potemkin, D.I., Kinet. Catal., 2022, vol. 63, no. 1, p. 123.

    Article  CAS  Google Scholar 

  4. Shigarov, A.B., Kireenkov, V.V., Kuzmin, V.A., Kuzin, N.A., and Kirillov, V.A., Catal. Today, 2009, vol. 144, nos. 3–4, p. 341.

    Article  CAS  Google Scholar 

  5. Alvarez-Galvan, M.C., Navarro, R.M, Rosa, F., Briceño, Y., Gordillo Alvarez, F., and Fierro, JL.G., Int. J. Hydrogen Energy, 2008, vol. 33, no. 2, p. 652.

    Article  CAS  Google Scholar 

  6. Bae, J., Lee, S., Kim, S., Oh, J., Choi, S., Bae, M., Kang, I., and Katikaneni, S.P., Int. J. Hydrogen Energy, 2016, vol. 41, no. 44, p. 19990.

    Article  CAS  Google Scholar 

  7. Bae, M., Cheon, H., Oh, J., Kim, D., Bae, J., and Katikaneni, S.P., Int. J. Hydrogen Energy, 2021, vol. 46, no. 52, p. 26575.

    Article  CAS  Google Scholar 

  8. Ju, D.G., Jo, S.B., Ha, D.S., Kim, T.Y., Jung, S.Y., Chae, H.J., Lee, S.C., and Kim, J.C., Catalysts, 2019, vol. 9, no. 7, p. 573.

    Article  CAS  Google Scholar 

  9. Karatzas, X., Jansson, K., Dawody, J., Lanza, R., and Pettersson, L.J., Appl. Catal., B, 2011, vol. 101, nos. 3–4, p. 226.

    Article  CAS  Google Scholar 

  10. Karatzas, X., Dawody, J., Grant, A., Svensson, E.E., and Pettersson, L.J., Catal. Today, 2011, p. 515.

  11. Kim, D., Choi, S., Jeong, S., Bae, M., Katikaneni, S.P., Bae, J., Heo, S., and Lee, J.H., Chem. Eng. J., 2021, vol. 424, p. 130564.

    Article  CAS  Google Scholar 

  12. Pasel, J., Samsun, R.C., Meisner, J., Tschauder, A., and Peters, R., Int. J. Hydrogen Energy, 2019, vol. 11, p. 137.

    Google Scholar 

  13. Rogozhnikov, V.N., Kuzin, N.A., Snytnikov, P.V., Potemkin, D.I., Shoynkhorova, T.B., Simonov, P.A., Shilov, V.A., Ruban, N.V., Kulikov, A.V., and Sobyanin, V.A., Chem. Eng. J., 2019, vol. 374, p. 511.

    Article  CAS  Google Scholar 

  14. Rogozhnikov, V.N., Potemkin, D.I., Ruban, N.V., Shilov, V.A., Salanov, A.N., Kulikov, A.V., Simonov, P.A., Gerasimov, E.Y., Sobyanin, V.A., and Snytnikov, P.V., Mater. Lett., 2019, vol. 257, p. 126715.

    Article  CAS  Google Scholar 

  15. Samsun, R.C., Prawitz, M., Tschauder, A., Mei Meißner, J., Pasel, J., and Peters, R., Appl. Energy, 2020, vol. 279, p. 115882.

    Article  CAS  Google Scholar 

  16. Shekhawat, D., Gardner, T.H., Berry, D.A., Salazar, M., Haynes, D.J., and Spivey, J.J., Appl. Catal., A, 2006, vol. 311, nos. 1–2, p. 8.

  17. Shilov, V.A., Rogozhnikov, V.N., Zazhigalov, S.V., Potemkin, D.I., Belyaev, V.D., Shashkov, M.V., Zagoruiko, A.N., Sobyanin, V.A., and Snytnikov, P.V., Int. J. Hydrogen Energy, 2021, vol. 46, no. 72, p. 35866.

    Article  CAS  Google Scholar 

  18. Shilov, V.A., Rogozhnikov, V.N., Ruban, N.V., Potemkin, D.I., Simonov, P.A., Shashkov, M.V., Sobyanin, V.A., and Snytnikov, P.V., Catal. Today, 2021, vol. 379, p. 42.

    Article  CAS  Google Scholar 

  19. Shilov, V.A., Rogozhnikov, V.N., Potemkin, D.I., Belyaev, V.D., Shashkov, M.V., Sobyanin, V.A., and Snytnikov, P.V., Int. J. Hydrogen Energy, 2022, vol. 47, no. 21, p. 11316.

    Article  CAS  Google Scholar 

  20. Younis, M.N., Malaibari, Z.O., Ahmad, W., and Ahmed, S., Energy Fuels, 2018, vol. 32, no. 6, p. 7054.

    Article  CAS  Google Scholar 

  21. Zazhigalov, S.V., Rogozhnikov, V.N., Snytnikov, P.V., Potemkin, D.I., Simonov, P.A., Shilov, V.A., Ruban, N.V., Kulikov, A.V., Zagoruiko, A.N., and Sobyanin, V.A., Chem. Eng. Process. Process Intensif., 2020, vol. 150, p. 107876.

    Article  CAS  Google Scholar 

  22. Zazhigalov, S.V., Shilov, V.A., Rogozhnikov, V.N., Potemkin, D.I., Sobyanin, V.A., Zagoruiko, A.N., and Snytnikov, P.V., Catal. Today, 2021, vol. 378, p. 240.

    Article  CAS  Google Scholar 

  23. Zazhigalov, S.V., Shilov, V.A., Rogozhnikov, V.N., Potemkin, D.I., Sobyanin, V.A., Zagoruiko, A.N., and Snytnikov, P.V., Chem. Eng. J., 2022, vol. 442, p. 136160.

    Article  CAS  Google Scholar 

  24. Simonov, P.A., Shoinkhorova, T.B., Snytnikov, P.V., Potemkin, D.I., and Belyaev, V.D., RF Patent 2653360 S1, 2017.

  25. Porsin, A.V., Kulikov, A.V., Rogozhnikov, V.N., Serkova, A.N., Salanov, A.N., and Shefer, K.I., Catal. Today, 2016, vol. 273, p. 213.

    Article  CAS  Google Scholar 

  26. Reshetnikov, S.I., Petrov, R.V., Zazhigalov, S.V., and Zagoruiko, A.N., Chem. Eng. J., 2020, vol. 380, p. 122374.

    Article  CAS  Google Scholar 

  27. Shoynkhorova, T.B., Simonov, P.A., Potemkin, D.I., Snytnikov, P.V., Belyaev, V.D., Ishchenko, A.V., Svintsitskiy, D.A., and Sobyanin, V.A., Appl. Catal., B, 2018, vol. 237, p. 237.

    Article  CAS  Google Scholar 

  28. Shilov, V.A., Rogozhnikov, V.N., Potemkin, D.I., and Snytnikov, P.V., Kinet. Katal., 2023, vol. 64, no. 1 (in press).

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 19-19-00257, https://rscf.ru/project/19-19-00257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shilov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and notation: TPO, temperature-programmed oxidation; ECG, electrochemical generator; ATR, autothermal reforming; SEM, scanning electron microscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilov, V.A., Rogozhnikov, V.N., Potemkin, D.I. et al. Regeneration of Rh/Ce0.75Zr0.25O2 – δ/θ-Al2O3/FeCrAl Catalyst after Autothermal Reforming of Diesel Fuel. Kinet Catal 64, 215–220 (2023). https://doi.org/10.1134/S0023158423020076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423020076

Keywords:

Navigation