Skip to main content
Log in

Machine Learning and Big Data Analysis in the Field of Catalysis (A Review)

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Recently, the rapid development of experimental methods in the field of catalytic research allows for large amounts of data to be obtained. The use of new statistical and computational processing methods, including the extraction of information from experimental data and their unbiased interpretation, is important for accelerating the development and implementation of catalytic technologies. Necessary information can be extracted using statistical approaches such as PCA, MCR, and ALS. At the same time, machine learning algorithms are beginning to be actively used to interpret and build descriptive models. This paper discusses the main methods of machine learning and examples of their successful application to the analysis of infrared and X-ray absorption spectroscopic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. Krupnov, A.A. and Pogosbekyan, M.Yu., Kinet. Catal., 2019, vol. 60, no. 2, p. 164.

    Article  CAS  Google Scholar 

  2. Dyusembaeva, A.A. and Vershinin, V.I., Kinet. Catal., 2019, vol. 60, no. 1, p. 106.

    Article  CAS  Google Scholar 

  3. Landrum, G.A., Penzotti, J.E., and Putta, S., Meas. Sci. Technol., 2005, vol. 16, p. 270.

    Article  CAS  Google Scholar 

  4. Erdem Günay, M. and Yıldırım, R., Catal. Rev. Sci. Eng., 2021, vol. 63, p. 120.

    Article  Google Scholar 

  5. Jollife, I.T. and Cadima, J., Philos. Trans. R. Soc., A, 2016, vol. 374, p. 1.

  6. Wei, J. and Cao, S., International Conference on Intelligent Computing and Control Systems (ICCS), Secunderabad: IEEE, 2019, p. 85.

  7. Landrum, G.A., Penzotti, J.E., and Putta, S., Meas. Sci. Technol., 2004, vol. 16, no. 1, p. 270.

    Article  Google Scholar 

  8. Dai, Q., Zhang, C., and Wu, H., Int. J. Database Theory Appl., 2016, vol. 9, p. 1.

    Article  Google Scholar 

  9. Somvanshi, M. and Chavan, P., International conference on computing communication control and automation (ICCUBEA), Maharashtra: IEEE, 2016, p. 1.

  10. Jinnouchi, R. and Asahi, R., J. Phys. Chem. Lett. 2017, vol. 8, p. 4279.

    Article  CAS  PubMed  Google Scholar 

  11. Saikia, P., Baruah, R.D., Singh, S.K., and Chaudhuri, P.K., Comput. Geosci., 2020, vol. 135, p. 1.

    Article  Google Scholar 

  12. Li, H., Zhang, Z., and Liu, Z., Catalysts, 2017, vol. 7, p. 1.

    Google Scholar 

  13. Yano, J. and Yachandra, V.K., Photosynth. Res., 2009, vol. 102, p. 241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cibin, G., Gianolio, D., Parry, S.A., Schoonjans, T., Moore, O., Draper, R., Miller, L.A., Thoma, A., Doswell, C.L., and Graham, A., Radiat. Phys. Chem., 2020, vol. 175, p. 1.

    Article  Google Scholar 

  15. Mathew, K., Zheng, C., Winston, D., Chen, C., Dozier, A., Rehr, J.J., Ong, S.P., and Persson, K.A., Sci. Data, 2018, vol. 5, p. 1.

    Article  Google Scholar 

  16. Ravel, B. and Newville, M., J. Synchrotron Radiat., 2005, vol. 12, p. 537.

    Article  CAS  PubMed  Google Scholar 

  17. Zheng, C., Mathew, K., Chen, C., Chen, Y., Tang, H., Dozier, A., Kas, J.J., Vila, F.D., Rehr, J.J., Piper, L.F.J., Persson, K.A., and Ong, S.P., Comput. Mater., 2018, vol. 4, p. 1.

    Article  Google Scholar 

  18. Timoshenko, J., Jeon, H.S., Sinev, I., Haase, F.T., Herzog, A., and Cuenya, B.R., Chem. Sci., 2020, vol. 11, p. 3727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Timoshenko, J.LuD., Lin, Y., and Frenkel, A.I., J. Phys. Chem. Lett., 2017, vol. 8, p. 5091.

    Article  CAS  PubMed  Google Scholar 

  20. Miyazato, I., Takahashi, L., and Takahashi, K., Mol. Syst. Des. Eng., 2019, vol. 4, p. 1014.

    Article  CAS  Google Scholar 

  21. Weckhuysen, B.M., Phys. Chem. Chem. Phys., 2003, vol. 5, p. 4351.

    Article  CAS  Google Scholar 

  22. Serhan, M., Sprowls, M., Jackemeyer, D., Long, M., Perez, I.D., Maret, W., and Forzani, E., AIChE Annu. Meet., Conf. Proc, 2019.

  23. Penner-Hahn, J.E., Comprehensive Coordination Chemistry. II, Mccleverty, J.A. and Meyer, T.J., Eds., Amsterdam: Elsevier–Pergamon, 2003, vol. 2, p. 159.

    Google Scholar 

  24. Wu, L.B., Wu, L.H., Yang, W.M., and Frenkel, A.I., Catal. Sci. Technol., 2014, vol. 4, p. 2512.

    Article  CAS  Google Scholar 

  25. Huth, F., Schnell, M., Wittborn, J., Ocelic, N., and Hillenbrand, R., Nat. Mater., 2011, vol. 10, p. 352.

    Article  CAS  PubMed  Google Scholar 

  26. Ellis, D.I., Broadhurst, D., Clarke, S.J., and Goodacre, R., Analyst, 2005, vol. 130, p. 1648.

    Article  CAS  PubMed  Google Scholar 

  27. Howley, T., Madden, M.G., O’Connell, M.-L., and Ryder, A.G., International Conference on Innovative Techniques and Applications of Artificial Intelligence, Cambridge, 2005, p. 209.

  28. Zou, T., Dou, Y., Mi, H., Zou, J., and Ren, Y., Analyt. Biochem., 2006, vol. 355, p. 1.

    Article  CAS  PubMed  Google Scholar 

  29. Kale, M.J. and Christopher, P., ACS Catal., 2016, vol. 6, p. 5599.

    Article  CAS  Google Scholar 

  30. Lansford, J.L. and Vlachos, D.G., Nat. Commun. 2020, vol. 11, p. 1.

    Article  Google Scholar 

  31. Davies, J.C., Nielsen, R.M., Thomsen, L.B., Chorkendorff, I., Logadottir, A., Lodziana, Z., and Besenbacher, F., Fuel Cells, 2004, vol. 4, p. 309.

    Article  CAS  Google Scholar 

  32. Steininger, H., Lehwald, S., and Ibach, H., Surf. Sci., 1982, vol. 123, p. 264.

    Article  CAS  Google Scholar 

  33. Lansford, J.L. and Vlachos, D.G., ACS Nano, 2020, vol. 14, p. 17295.

    Article  CAS  PubMed  Google Scholar 

  34. Agarwal, N., Sondhi, A., Chopra, K., and Singh, G., Smart Innovations in Communication and Computational Sciences. Advances in Intelligent Systems and Computing, Tiwari, S., Trivedi, M., Mishra, K., Misra, A., Kumar, K., and Suryani, E., Eds., Singapore: Springer, 2021, vol. 1168, p. 145.

    Google Scholar 

  35. Chanussot, L., Das, A., Heras-Domingo, J., Goyal, S., Ho, C., Lavril, T., Palizhati, A., Parikh, D., Riviere, M., Shuaibi, M., Tran, K., Ulissi, Z., Yoon, J., and Zitnick, C.L., 2020 Virtual AIChE Annual Meeting, 2020.

Download references

ACKNOWLEDGMENTS

The authors are grateful to E.A. Uslamin (Postdoc, Delft University of Technology) for his invaluable help in planning and preparing this article.

Funding

This study was supported by the Tyumen oblast as part of the implementation of a grant agreement in the form of a subsidy to nonprofit organizations no. 89-DON dated December 7, 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Mikhailov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and notation: PCA, principal component analysis; MCR, multivariate curve resolution; ALS, alternating least squares; XAS, X-ray adsorption spectroscopy; XANES, X-ray absorption near edge structure; EXAFS, extended X-ray absorption fine structure; AI, artificial intelligence; ML, machine learning; UML, unsupervised machine learning; SML, supervised machine learning; SVM, support vector machine; NIR, near infrared (range); GCN, generalized coordination number; MLR, multivariate linear regression; LR, logistic regression; DFT, density functional theory; PDF, probability distribution function; HPSTM, high-pressure scanning tunneling microscopy; DRIFT, diffuse reflectance infrared Fourier transform spectroscopy; ATR, attenuated total reflection IR spectroscopy; SVM, support vector machine; LEED, low energy electron diffraction; MS, mass spectrometry; TDS, thermal desorption spectroscopy; HREELS, high resolution electron energy loss spectroscopy; SERS, surface enhanced Raman spectroscopy; COOP, crystal orbital overlap population; FCC, face-centered cubic lattice; HCP, hexagonal close-packed lattice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, V.G., Mikhailov, Y.A. & Elyshev, A.V. Machine Learning and Big Data Analysis in the Field of Catalysis (A Review). Kinet Catal 64, 122–134 (2023). https://doi.org/10.1134/S0023158423020027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423020027

Keywords:

Navigation