Skip to main content
Log in

Catalytic Methods for Producing Higher 2-Ketones: Prospects for the Wacker System in the Oxidation of α-Olefins (A Review)

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Methods developed over the past 60 years for the preparation of unbranched С6–С14 2-ketones by catalytic oxidation of linear α-olefins have been analyzed and summarized. Particular attention has been paid to the consideration of the catalytic Wacker system, which is important for industrial organic synthesis, and the proposed ways for its modification. Methods for controlling the reaction selectivity have been discussed, and the role of cocatalysts, oxidizing agents, and ligands has been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Notes

  1. In foreign publications, this process can also be found under the name Wacker–Hoechst Process.

REFERENCES

  1. Sheldon, R.A., Green. Chem., 2007, vol. 9, p. 1273.

    Article  CAS  Google Scholar 

  2. Eco-Friendly Synthesis of Fine Chemicals, Ballini, R., Ed., RSC, 2009.

    Google Scholar 

  3. Balakrishnan, M., Arab, G.E., Kunbargi, O.B., Gokhale, A.A., Grippo, A.M., Toste, F.D., and Bell, A.T., Green Chem., 2016, vol. 18, p. 3577.

    Article  CAS  Google Scholar 

  4. RF Patent 2371472, 2009.

  5. Reutov, O.A., Kurts, A.L., and Butin, K.P., Organicheskaya khimiya (Organic Chemistry), Moscow: Binom. Laboratoriya znanii, 2010, vol. 3.

  6. Traven’, V.F., Organicheskaya khimiya (Organic Chemisty), Moscow: Binom. Laboratoriya znanii, 2015, vol. 2, p. 433.

  7. Arends, I.W.C.E and Sheldon, R.A., Modern Oxidation Methods, Bäckvall, J.-E., Ed., Weinheim: Wiley, 2004, p. 83–118.

  8. Anastas, P.T. and Warner, J.C., Green Chemistry: Theory and Practice, New York: Oxford University, 1998.

    Google Scholar 

  9. Tang, S., Bourne, R., Smith, R., and Poliakoff, M., Green Chem., 2008, vol. 10, p. 268.

    Article  CAS  Google Scholar 

  10. Smidt, J., Hafner, W., Jira, R., Sedlmeier, J., Sieber, R., Kojer, H., and Rüttinger, R., Angew. Chem., 1959, vol. 71, p. 176.

    Article  CAS  Google Scholar 

  11. Cornell, C.N. and Sigman, M.S., Inorg. Chem., 2007, vol. 46, p. 1903.

    Article  CAS  PubMed  Google Scholar 

  12. Gligorich, K.M. and Sigman, M.S., Chem. Commun. 2009, p. 3854.

  13. McDonald, R.I., Liu, G., and Stahl, S.S., Chem. Rev., 2011, vol. 111, p. 2981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sigman, M.S. and Werner, E.W., Acc. Chem. Res., 2012, vol. 45, no. 6, p. 874.

    Article  CAS  PubMed  Google Scholar 

  15. Temkin, O.N., Kinet. Catal., 2020, vol. 61, no. 5, p. 663.

    Article  CAS  Google Scholar 

  16. Gogin, L.L. and Zhizhina, E.G., Katal. Prom-sti, 2021, vol. 21, nos. 1–2, p. 67.

    CAS  Google Scholar 

  17. FRG Patent 1049845, 1959.

  18. Jira, R., Applied Homogeneous Catalysis with Organometallic Compounds, vol. 1, Cornils, B. and Herrmann, W.A., Eds., Weinheim: VCH, 1996, p. 374.

    Google Scholar 

  19. Novyi spravochnik khimika i tekhnologa. Syr’e i produkty promyshlennosti organicheskikh i neorganicheskikh veshchestv. Ch. II (New Handbook of Chemist and Technologist. Raw Materials and Products of the Industry of Organic and Inorganic Substances. Part II), St. Petersburg: ANO NPO “Professional”, 2007.

  20. Jira, R., Laib, R.J., and Bolt, H.M., Ulmann’s Encyclopedia of Industrial Chemistry, 1985, vol. A1, p. 31.

    Google Scholar 

  21. Trofimov, B.A. and Ivanov, A.V., Vestnik SPbGU, Ser. 4, 2014, vol. 1, no. 59, p. 558.

    Google Scholar 

  22. Organicheskaya khimiya: Uchebn. posobie (Organic Chemistry: Tutorial), Novosibirsk: Sib. univ., 2001, p. 478.

  23. Vargaftik, M.N., Moiseev, I.I., and Syrkin, Ya.K., Dokl. Akad. Nauk SSSR, 1962, vol. 147, p. 399.

    CAS  Google Scholar 

  24. Moiseev, I.I., Vargaftik, M.N., and Syrkin, Ya.K., Dokl. Akad. Nauk SSSR, 1963, vol. 153, p. 140.

    CAS  Google Scholar 

  25. Vargaftik, M.N., Moiseev, I.I., and Syrkin, Ya.K., Izv. Akad. Nauk SSSR, Ser. Khim., 1963, p. 1147.

  26. Moiseev, I.I., π-Kompleksy olefinov v zhidkofaznom okislenii (π-Complexes of Olephynes in a Liquid State), Moscow: Nauka, 1970.

  27. Henry, P.M., J. Org. Chem., 1973, vol. 38, p. 2415.

    Article  CAS  Google Scholar 

  28. Keith, J.A. and Henry, P.M., Angew. Chem., Int. Ed., 2009, vol. 48, p. 9038.

    Article  CAS  Google Scholar 

  29. Jira, R., Applied Homogeneous Catalysis with Organometallic Compounds, vol. 1, Cornils, B. and Herrmann, W.A., Eds., Weinheim: VCH, 2002, p. 386.

    Google Scholar 

  30. Tsuji, J., Innovations in Organic Synthesis, Chichester: Wiley, 1995, p. 549.

    Google Scholar 

  31. Smidt, J. and Krekeler, H., Per. Refiner., 1963, vol. 42, p. 149.

    Google Scholar 

  32. Rogers, H.R., McDermott, J.X., and Whitesides, G.M., J. Org. Chem., 1975, vol. 40, no. 24, p. 3577.

    Article  CAS  Google Scholar 

  33. Mimoun, H., Machirant, M.M.P., and Seree de Roch, I., J. Am. Chem. Soc., 1978, vol. 100, no. 17, p. 5437.

    Article  Google Scholar 

  34. Igersheim, F. and Mimoum, H., J. Chem. Soc. Chem. Commun., 1978, p. 559.

  35. Clement, W.H. and Selwitz, C.M., J. Org. Chem., 1964, vol. 29, no. 1, p. 241.

    Article  CAS  Google Scholar 

  36. US Patent 4507506, 1985.

  37. Harada, A., Hu, Y., and Takahashi, S., Chem. Lett., 1986, p. 2083.

  38. Zahalka, H.A., Januszkiewicz, K., and Alper, H., J. Mol. Catal., 1986, vol. 35, p. 249.

    Article  CAS  Google Scholar 

  39. Alper, H., Januszkiewicz, K., and Smith, D.J.H., Tetrahedron Lett., 1985, vol. 26, no. 19, p. 2263.

    Article  CAS  Google Scholar 

  40. Maksimov, A.L., Buchneva, T.S., and Karakhanov, E.A., Neftekhimiya, 2003, vol. 43, no. 3, p. 173.

    CAS  Google Scholar 

  41. US Patent 4152354, 1979.

  42. US Patent 4448892, 1984.

  43. US Patent 4532362, 1985.

  44. Jira, R. and Freiesleben, W., Organometallic Reactions, vol. 3, Becker, E. and Tsutsui, M., Eds., New York: John Wiley, 1972.

    Google Scholar 

  45. Grate, J.H., Hamm, D.R., and Mahajan, S., Mol. Eng., 1993, vol. 3, p. 205.

    Article  CAS  Google Scholar 

  46. Mitsudome, T., Umetani, T., Nosaka, N., Mori, K., Mizugaki, T., Ebitani, K., and Kaneda, K., Angew. Chem., Int. Ed., 2006, vol. 45, no. 3, p. 481.

    Article  CAS  Google Scholar 

  47. Fernandes, R.A. and Chaudhari, D.A., J. Org. Chem., 2014, vol. 79, no. 12, p. 5787.

    Article  CAS  PubMed  Google Scholar 

  48. Fernandes, R.A. and Bethi, V., Tetrahedron, 2014, vol. 70, p. 4760.

    Article  CAS  Google Scholar 

  49. Smith, A.B., Cho, Y.S., and Friestad, G.K., Tetrahedron Lett., 1998, vol. 39, p. 8765.

    Article  CAS  Google Scholar 

  50. US Patent 4738943, 1988.

  51. US Patent 4847421, 1989.

  52. Miller, D.G. and Wayner, D.D.M., J. Org. Chem., 1990, vol. 55, p. 2924.

    Article  CAS  Google Scholar 

  53. US Patent 9096519 B2, 2015.

  54. Wang, Y.-F., Gao, Y.-R., Mao, S., Zhang, Y.-L., Guo, D.-D., Yan, Z.-L., Guo, S.-H., and Wang, Y.-Q., Org. Lett., 2014, vol. 16, no. 6, p. 1610.

    Article  CAS  PubMed  Google Scholar 

  55. Chaudhari, D.A. and Fernandes, R.A., J. Org. Chem., 2016, vol. 81, no. 5, p. 2113.

    Article  CAS  PubMed  Google Scholar 

  56. Ho, Y.A., Paffenholz, E., Kim, H.J., Orgis, B., Rueping, M., and Fabry, D.C., ChemCatChem, 2019, vol. 11, no. 7, p. 1889.

    Article  CAS  Google Scholar 

  57. Michel, B.W. and Sigman, M.S., Aldrichim. Acta, 2011, vol. 44, no. 3, p. 55.

    CAS  Google Scholar 

  58. Roussel, M. and Mimoun, H., J. Org. Chem., 1980, vol. 45, no. 26, p. 5387.

    Article  CAS  Google Scholar 

  59. Mimoum, H., Charpentier, R., Mitschler, A., Fischer, J., and Weiss, R., J. Am. Chem. Soc., 1980, vol. 102, p. 1047.

    Article  Google Scholar 

  60. Michel, B.W., Camelio, A.M., Cornell, C.N., and Sigman, M.S., J. Am. Chem. Soc., 2009, vol. 131, p. 6076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cao, Q., Bailie, D.S., Fu, R., and Muldoon, M.J., Green Chem., 2015, vol. 17, p. 2750.

    Article  CAS  Google Scholar 

  62. Andrews, M.A. and Kelly, K.P., J. Am. Chem. Soc., 1981, vol. 103, p. 2894.

    Article  CAS  Google Scholar 

  63. Hosokawa, T., Nomura, T., and Murahashi, S.-I., J. Organomet. Chem., 1998, vol. 551, p. 387.

    Article  CAS  Google Scholar 

  64. ten Brink, G.-J., Arends, I.W.C., Papadogianakis, G., and Sheldon, R.A., Chem. Commun., 1998, p. 2359.

  65. ten Brink, G.-J., Arends, I.W.C., Papadogianakis, G., and Sheldon, R.A., Appl. Catal., A, 2000, vols. 194–195, p. 435.

  66. Rao, Y.V.S., Rani, S.S., and Choudary, B.M., J. Mol. Catal., 1992, vol. 75, p. 141.

    Article  CAS  Google Scholar 

  67. Kulkarni, M.G., Shaikh, Y.B., Borhade, A.S., Chavhan, S.W., Dhondge, A.P., Gaikwad, D.D., Desai, M.P., Birhade, D.R., and Dhatrak, N.R., Tetrahedron Lett., 2013, vol. 54, p. 2293.

    Article  CAS  Google Scholar 

  68. Zhang, Z., Kumamoto, Y., Hashiguchi, T., Mamba, T., Murayama, H., Yamamoto, E., Ishida, T., Honma, T., and Tokunaga, M., ChemSusChem, 2017, vol. 10, no. 17, p. 3482.

    Article  CAS  PubMed  Google Scholar 

  69. Gao, X., Li, Z., Yan, W., and Peng, X., J. Saudi. Chem. Soc., 2020, vol. 24, p. 663.

    Article  CAS  Google Scholar 

  70. Pop, M.S., Geteropoli- i izopolioksometallaty (Heteropoly- and Isopolyoxometalates), Novosibirsk: Nauka. Sib. otdelenie, 1990.

  71. Maksimov, G.M., Russ. Chem. Rev., 1995, vol. 64, no. 5, p. 445.

    Article  Google Scholar 

  72. Kozhevnikov, I.V., Chem. Rev., 1998, vol. 98, nos. 1–2, p. 171.

    Article  CAS  PubMed  Google Scholar 

  73. Neumann, R., Inorg. Chem., 2010, vol. 49, no. 8, p. 3594.

    Article  CAS  PubMed  Google Scholar 

  74. Zhizhina, E.G. and Odyakov, V.F., ChemCatChem, 2012, vol. 4, no. 9, p. 1405.

    Article  CAS  Google Scholar 

  75. Albert, J., Lüders, D., Bösmann, A., Guldi, D.M., and Wasserscheid, P., Green Chem., 2014, vol. 16, no. 1, p. 226.

    Article  CAS  Google Scholar 

  76. Gromov, N.V., Taran, O.P., Delidovich, I.V., Pestunov, A.V., Rodikova, Yu.A., Yatsenko, D.A., Zhizhina, E.G., and Parmon, V.N., Catal. Today, 2016, vol. 278, no. 1, p. 74.

    Article  CAS  Google Scholar 

  77. Rodikova, Y. and Zhizhina, E., React. Kinet. Mech. Catal., 2020, vol. 130, no. 1, p. 403.

    Article  CAS  Google Scholar 

  78. Gromov, N.V., Medvedeva, T.B., Sorokina, K.N., Samoylova, Y.V., Rodikova, Y.A., and Parmon, V.N., ACS Sustain. Chem. Eng., 2020, vol.8, no. 51, p.18947.

    Article  CAS  Google Scholar 

  79. US Patent 4720474, 1988.

  80. US Patent 4723041, 1988.

  81. US Patent 4853357, 1989.

  82. Tilloy, S., Bertoux, F., Mortreux, A., and Monflier, E., Catal. Today, 1999, vol. 48, p. 245.

    Article  CAS  Google Scholar 

  83. Monflier, E., Blouet, E., Barbaux, Y., and Mortreux, A., Angew. Chem., Int. Ed., 1994, vol. 33, no. 20, p. 2100.

    Article  Google Scholar 

  84. Monflier, E., Tilloy, S., Blouet, E., Barbaux, Y., and Mortreux, A., J. Mol. Catal., A: Chem. 1996, vol. 109, p. 27.

    Article  CAS  Google Scholar 

  85. Monflier, E., Tilloy, S., Fremy, G., Barbauxa, Y., and Mortreux, A., Tetrahedron Lett., 1995, vol. 36, no. 3, p. 387.

    Article  CAS  Google Scholar 

  86. Yokota, T., Sakakura, A., Tani, M., Sakaguchi, S., and Ishii, Y., Tetrahedron Lett., 2002, vol. 43, p. 8887.

    Article  CAS  Google Scholar 

  87. Ettedgui, J. and Neumann, R., J. Am. Chem. Soc., 2009, vol. 131, no. 1, p. 4.

    Article  CAS  PubMed  Google Scholar 

  88. USSR Patent 1031045, 1995.

  89. RF Patent 2230612 S1, 2004.

Download references

Funding

This review was supported by the Ministry of Science and Higher Education of the Russian Federation and prepared within the framework of a state contract of the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. АААА-А21-121011390007-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Rodikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and notation: DMF, N,N-dimethylformamide; AcOH, acetic acid; THF, tetrahydrofuran; CH3CN, acetonitrile; PTC, phase-transfer catalyst; CD, cyclodextrin; PEG, polyethylene glycol; CTAB, hexadecyltrimethylammonium bromide; Ox, oxidizing agent; DMAA, N,N-dimethylacetamide; BQ, p-benzoquinone; HPC, heteropoly compound; HPA, heteropoly acid; HPC-x, vanadium-containing heteropoly compound, and x is the number of vanadium(V) atoms in the composition; BPS, bathophenanthroline disulfonate; Bphen, bathophenanthroline; L, ligand; S, selectivity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodikova, Y.A., Zhizhina, E.G. Catalytic Methods for Producing Higher 2-Ketones: Prospects for the Wacker System in the Oxidation of α-Olefins (A Review). Kinet Catal 64, 105–121 (2023). https://doi.org/10.1134/S0023158423020064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423020064

Keywords:

Navigation