Skip to main content
Log in

Effect of СО2 Additives on the Noncatalytic Conversion of Natural Gas into Syngas and Hydrogen

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A kinetic analysis of the noncatalytic carbon dioxide reforming of CH4 has been carried out in the temperature range of 1500–1800 K under conditions of variable temperature behind the reflected shock wave. The stages of methane conversion into syngas, the characteristic time intervals corresponding to these stages, and the most important elementary reactions have been established. At the first stage, as a result of thermal pyrolysis, methane molecules are sequentially converted into ethane, ethylene, and then acetylene, the most stable hydrocarbon in this temperature range. At the second stage, acetylene is normally converted into CO and H2 and also into soot particles in the case of rich mixtures. The conversion of CO2 proceeds at the second and third stages, when CH4 conversion is almost complete. It occurs as a result of the interaction of CO2 molecules with \({{{\text{H}}}^{\bullet }}\) atoms arising in the reacting system and leads to the formation of CO molecules and \({\text{O}}{{{\text{H}}}^{\bullet }}\) radicals. Acetylene is predominantly consumed in the reaction with \({\text{O}}{{{\text{H}}}^{\bullet }}\) radicals. The high concentration of acetylene during methane reforming promotes active formation of soot nuclei, for which acetylene makes the highest contribution to the rate of their surface growth. At the same time, acetylene itself is not a precursor of soot particle nuclei, which mainly form from \({{{\text{C}}}_{{\text{3}}}}{\text{H}}_{3}^{\bullet }\) radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

REFERENCES

  1. Braginskii, O.B., Mirovaya neftekhimicheskaya promyshlennost' (World Petrochemical Industry), Moscow: Nauka, 2003.

  2. Braginskii, O.B., Neftegazovyi kompleks mira (Oil and Gas Complex of the World), Moscow: “Neft’ i gaz” Gubkin University, 2006.

  3. Savchenko, V.I., Makaryan, I.A., and Arutyunov, V.S., Mir Nefteproduktov. Vestnik neftyanykh kompanii, 2013, no. 11, p. 3.

  4. Rostrup-Nielsen, J.R., Catal. Today, 2002, vol. 71, p. 243.

    Article  CAS  Google Scholar 

  5. Arutyunov, V.S., Golubeva, I.A., Eliseev, O.L., and Zhagfarov, F.G., Tekhnologiya pererabotki uglevodorodnykh gazov (Technology of Refining of Hydrocarbon Gases), Moscow: Yurait, 2020.

  6. Gregoire Padro, C.E. and Lau, F., Adv. Hydrogen Energy, 2002.

  7. Bockris, J.O’.M., Int. J. Hydrogen Energy, 2013, vol. 38, p. 2579.

    Article  CAS  Google Scholar 

  8. Kalamaras, C.M. and Efstathiou, A.M., Conf. Pap. Energy, 2013. https://doi.org/10.1155/2013/690627

  9. Aasberg-Petersen, K., Hansen, J.-H.B., Christensen, T.S., Dybkjaer, I., Christensen, P.S., Nielsen, C.S., Madsen, S.E.L.W., and Rostrup-Nielsen, J.R., Appl. Catal., 2001, vol. 221, p. 379.

    Article  CAS  Google Scholar 

  10. Aasberg-Petersen, K., Dybkjær, I., Ovesen, C.V., Schjodt, N.C., Sehested, J., and Thomsen, S.G., J. Nat. Gas Sci. Eng., 2011, vol. 3, p. 423. https://doi.org/10.1016/j.jngse.2011.03.004

    Article  CAS  Google Scholar 

  11. Arutyunov, V.S., Shmelev, V.M., Lobanov, I.N., and Politenkova, G.G., Teoreticheskie Osnovy Khim. Tekhnol., 2010, vol. 44, no. 1, p. 21. https://doi.org/10.1134/S0040579510010033

    Article  CAS  Google Scholar 

  12. Arutyunov, V.S., Shmelev, V.M., Sinev, M.Yu., and Shapovalova, O.V., Chem. Eng. J., 2011, vol. 291, p. 176. https://doi.org/10.1016/j.cej.2011.03.084

    Article  CAS  Google Scholar 

  13. Arutyunov, V.S., Savchenko, V.I., Sedov, I.V., Shmelev, V.M., Nikitin, A.V., Fokin, I.G., Eksanov, S.A., Shapovalova, O.V., and Timofeev, K.A., Russ. J. Appl. Chem., 2016, vol. 89, no. 11, p. 1816.

    Article  CAS  Google Scholar 

  14. Aldoshin, S.M., Arutyunov, V.S., Savchenko, V.I., Sedov, I.V., Nikitin, A.V., and Fokin, I.G., Russ. J. Phys. Chem. B, 2021, vol. 40, no. 5, p. 498. https://doi.org/10.31857/S0207401X21050034

    Article  Google Scholar 

  15. Arutyunov, V.S., Nikitin, A.V., Strekova, L.N., Savchenko, V.I., Sedov, I.V., Ozerskii, A.V., and Zimin, Ya.S., Zh. Tekh. Fiz., 2021, vol. 91, no. 5, p. 713.

    Google Scholar 

  16. Van den Schoor, F. and Verplaetsen, F., J. Hazard. Mater., 2006, vol. 128, no. 1, p. 1. https://doi.org/10.1016/j.jhazmat.2005.06.043

    Article  CAS  PubMed  Google Scholar 

  17. Wan, X., Zhang, Qi., and Lian, Z., Ind. Eng. Chem. Res., 2016, vol. 55, no. 30, p. 8472. https://doi.org/10.1021/acs.iecr.6b01012

    Article  CAS  Google Scholar 

  18. Maksimov, Yu.M., Kirdyashkin, A.I., and Arkatova, L.A., Katal. Prom-sti, 2013, vol. 2, p. 45.

    Google Scholar 

  19. Dorofeenko, S.O. and Polianczyk, E.V., Chem. Eng. J., 2016, vol. 292, p. 183. https://doi.org/10.1016/j.cej.2016.02.013

    Article  CAS  Google Scholar 

  20. Dorofeenko, S.O. and Polianczyk, E.V., Int. J. Hydrogen Energy, 2019, vol. 44, p. 30039. https://doi.org/10.1016/j.ijhydene.2019.09.208

    Article  CAS  Google Scholar 

  21. Arutyunov, V.S., Shmelev, V.M., Rakhmetov, A.N., and Shapovalova, O.V., Ind. Eng. Chem. Res., 2014, vol. 53, no. 5, p. 1754. https://doi.org/10.1021/ie4022489

    Article  CAS  Google Scholar 

  22. Arutyunov, V.S., Savchenko, V.I., Sedov, I.V., Shmelev, V.M., Nikitin, A.V., Fokin, I.G., Eksanov, S.A., Shapovalova, O.V., and Timofeev, K.A., Russ. J. Appl. Chem., 2016, vol. 89, no. 11, p. 1816.

    Article  CAS  Google Scholar 

  23. Nikitin, A., Ozersky, A., Savchenko, V., Sedov, I., Shmelev, V., and Arutyunov, V., Chem. Eng. J., 2019, vol. 377, article no. 120883. https://doi.org/10.1016/j.cej.2019.01.162

    Article  CAS  Google Scholar 

  24. Arutyunov, V., Nikitin, A., Strekova, L., Savchenko, V., and Sedov, I., Catal. Today, 2021, vol. 379, p. 23. https://doi.org/10.1016/j.cattod.2020.06.057

    Article  CAS  Google Scholar 

  25. Arutyunov, V.S., Strekova, L.N., Savchenko, V.I., Sedov, I.V., Nikitin, A.V., Eliseev, O.L., Kryuchkov, M.V., and Lapidus, A.L., Pet. Chem., 2019, vol. 59, no. 3, p. 370. https://doi.org/10.1134/S002824211903002X

    Article  CAS  Google Scholar 

  26. Shmelev, V.M., Russ. J. Phys. Chem. B, 2010, vol. 29, no. 7, p. 593.

    Article  Google Scholar 

  27. Shmelev, V.M., Combust. Sci. Technol., 2014, vol. 186, no. 7, p. 943. https://doi.org/10.1080/00102202.2014.890601

    Article  CAS  Google Scholar 

  28. Shmelev, V.M. and Nikolaev, V.M., Russ. J. Phys. Chem. B, 2016, vol. 35, no. 3, p. 263.

    Article  Google Scholar 

  29. Shmelev, V., Energy Power Eng., 2017, vol. 9, p. 366. http://www.scirp.org/journal/epe

    Article  CAS  Google Scholar 

  30. Wang, L., Liu, Z., Chen, S., Zheng, C., and Li, J., Energy Fuels, 2013, vol. 27, no. 12, p. 7602. https://doi.org/10.1021/ef401559r

    Article  CAS  Google Scholar 

  31. Lavoe, J.-M., Front. Chem., 2014, vol. 2(81). https://doi.org/10.3389/fchem.2014.00081

  32. Shah, Y.T. and Gardner, T.H., Catal. Rev., 2014, vol. 56, no. 4, p. 476. https://doi.org/10.1080/01614940.2014.946848

    Article  CAS  Google Scholar 

  33. Wittich, K., Schunk, S.A., Kramer, M., and Bottke, N., Chem. Catal. Chem., 2020, vol. 12, p. 2130. https://doi.org/10.1002/cctc.201902142

    Article  CAS  Google Scholar 

  34. Savchenko, V.I., Shapovalova, O.V., Nikitin, A.V., Arutyunov, V.S., and Sedov, I.V., Russ. J. Appl. Chem., 2018, vol. 91, no. 9, p. 1500. https://doi.org/10.1134/S0044461818090128

    Article  CAS  Google Scholar 

  35. Savchenko, V.I., Nikitin, A.V., Ozerskii, A.V., Sedov, I.V., and Arutyunov, V.S., Pet. Chem., 2020, vol. 60, no. 4, p. 818. https://doi.org/10.31857/S0028242120040139

    Article  CAS  Google Scholar 

  36. Savchenko, V.I., Zimin, Ya.S., Nikitin, A.V., Sedov, I.V., and Arutyunov, V.S., Pet. Chem., 2021, vol. 61, no. 4, p. 762. https://doi.org/10.1134/S0965544121070021

    Article  CAS  Google Scholar 

  37. Busillo, E., Savchenko, V.I., and Arutyunov, V.S., Pet. Chem., 2021, vol. 61, no. 6, p. 1228. https://doi.org/10.1134/S0965544121110037

    Article  CAS  Google Scholar 

  38. Savchenko, V.I., Zimin, Ya.S., Buzillo, E., Nikitin, A.V., Sedov, I.V., and Arutyunov, V.S., Pet. Chem., 2022, vol. 62, no. 3, p. 515. https://doi.org/10.1134/S0965544122050048

    Article  CAS  Google Scholar 

  39. Duff R.E., Bauer S.H., J. Chem. Phys., 1962, vol. 36, p. 1754.

    Article  Google Scholar 

  40. Warnatz J.,·Maas U., Dibble R.W. Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, Springer, 2006. 378 p.

    Google Scholar 

  41. Healy, D., Kalitan, D.M., Aul, C.J., Petersen, E.L., Bourque, G., and Curran, H.J., Energy Fuels, 2010, vol. 24, no. 3, p. 1521.

    Article  CAS  Google Scholar 

  42. Chemical-Kinetic Mechanisms for Combustion Applications. https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html) (Cited November 30, 2022).

  43. Konnov, A.A., 28-th Symposium (Int.) on Combustion, Edinburgh: Abstr. Symp. Pap., 2000, p. 317.

  44. Zhang, Q., Liu, Y., Chen, T., Yu, X., Wang, J., and Wang, T., Chem. Eng. Sci., 2016, vol. 142, p. 126.

    Article  CAS  Google Scholar 

  45. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Jr. Gardiner, W.C., Lissianski, V., and Qin, Z. http://combustion.berkeley.edu/gri-mech/version30/text30.html.

  46. Healy, D., Kalitan, D.M., Aul, C.J., Petersen, E.L., Bourque, G., and Curran, H.J., Energy Fuels, 2010, vol. 24, no. 3, p. 1521.

    Article  CAS  Google Scholar 

  47. Rasmussen, C.L., Jakobsen, J.G., and Glarborg, P., Int. J. Chem. Kinet., 2008, vol. 40, no. 12, p. 778.

    Article  CAS  Google Scholar 

  48. Fomin, A., Zavleva, T., Alekseev, V., Rahinov, I., Cheskis, S., and Konnov, A., Combust. Flame, 2016, vol. 171, p. 198.

    Article  CAS  Google Scholar 

  49. San Diego Mechanism. http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html

  50. Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopoulos, F., and Law, C.K., USCMech Version II. High-Temperature Combustion Re-action Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/Mechanisms/USC-Mech%20II/USC_Mech%20II.htm (Cited May 2007).

  51. Belyaev, A.A., Nikitin, A.V., Toktaliev, P.D., Vlasov, P.A., Ozerskii, A.V., Dmitruk, A.S., Arutyunov, A.V., and Arutyunov, V.S., Gorenie Vzryv, 2018, vol. 11, no. 1, p. 19.

    Article  Google Scholar 

  52. Li, C., Kuan, B., Lee, W.J., Burke, N., and Patel, J., Chem. Eng. Sci., 2018, vol. 187, p. 189.

    Article  CAS  Google Scholar 

  53. Fotovat, F. and Rahimpour, M., Int. J. Hydrogen Energy, 2021, vol. 46, no. 37, p. 19312.

    Article  CAS  Google Scholar 

  54. Capriolo, C., Alekseev, V.A., and Konnov, A.A., Combust. Flame, 2018, vol. 197, p. 11.

    Article  CAS  Google Scholar 

  55. Savchenko, V.I., Nikitin, A.N., Zimin, Y.S., Ozerskii, A.V., Sedov, I.V., and Arutyunov, V.S., Chem. Eng. Res. Des., 2021, vol. 175, p. 250.

    Article  CAS  Google Scholar 

  56. Zhang, Q., Wang, J., and Wang, T., Ind. Eng. Chem. Res., 2016, vol. 55, p. 8383.

    Article  CAS  Google Scholar 

  57. Wang, T., Liu, Y., and Wang, D., Chem. Eng. J., 2012, vols. 207–208, p. 235.

    Google Scholar 

  58. Liu, Y., Zhang, Q., and Wang, T., Combust. Sci. Technol., 2017, vol. 189, no. 5, p. 908.

    Article  CAS  Google Scholar 

  59. Metcalfe, W.K., Burke, S.M., Ahmed, S.S., and Curran, H.J., J. Chem. Kinet., 2013, vol. 45, p. 638.

    Article  CAS  Google Scholar 

  60. CHEMKIN-PRO RELEASE 15101, Reaction Design, San Diego, 2010.

  61. Agafonov, G.L., Bilera, I.V., Vlasov, P.A., Zhil’tsova, I.V., Kolbanovskii, Yu.A., Smirnov, V.N., and Tereza, A.M., Kinet. Catal., 2016, vol. 57, no. 5, p. 557.

    Article  CAS  Google Scholar 

  62. Vlasov, P.A., Akhun’yanov, A.R., and Smirnov, V.N., Kinet. Catal., 2022, vol. 63, no. 2, p. 141.

    Article  CAS  Google Scholar 

  63. Frenklach, M. and Mebel, A.M., Phys. Chem. Chem. Phys., 2020, vol. 22, p. 5314.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was performed at Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, and supported by the Russian Science Foundation (grant no. 22-73-00171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Vlasov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhunyanov, A.R., Arutyunov, A.V., Vlasov, P.A. et al. Effect of СО2 Additives on the Noncatalytic Conversion of Natural Gas into Syngas and Hydrogen. Kinet Catal 64, 135–153 (2023). https://doi.org/10.1134/S0023158423020015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423020015

Keywords:

Navigation