Skip to main content

Advertisement

Log in

Clinical and imaging modality factors impacting radiological interpretation of breast screening in young women with neurofibromatosis type 1

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Young women with Neurofibromatosis type 1 (NF1) have a high risk of developing breast cancer and poorer survival following breast cancer diagnosis. International guidelines recommend commencing breast screening between 30 and 35 years; however, the optimal screening modality is unestablished, and previous reports suggest that breast imaging may be complicated by the presence of intramammary and cutaneous neurofibromas (cNFs). The aim of this study was to explore potential barriers to implementation of breast screening for young women with NF1.

Twenty-seven women (30–47 years) with NF1 completed breast screening with breast MRI, mammogram and breast ultrasound. Nineteen probably benign/suspicious lesions were detected across 14 women. Despite the presence of breast cNFs, initial biopsy rate for participants with NF1 (37%), were comparable to a BRCA pathogenic variant (PV) cohort (25%) (P = 0.311). No cancers or intramammary neurofibromas were identified. Most participants (89%) returned for second round screening.

The presence of cNF did not affect clinician confidence in 3D mammogram interpretation, although increasing breast density, frequently seen in young women, impeded confidence for 2D and 3D mammogram. Moderate or marked background parenchymal enhancement on MRI was higher in the NF1 cohort (70.4%) than BRCA PV carriers (47.3%), which is an independent risk factor for breast cancer.

Breast MRI was the preferred mode of screening over mammogram, as the majority (85%) with NF1 demonstrated breast density (BI-RADS 3C/4D), which hinders mammogram interpretation. For those with high breast density and high cNF breast coverage, 3D rather than 2D mammogram is preferred, if MRI is unavailable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not available.

Code Availability

N/A.

References

  1. Evans D, Howard E, Giblin C et al (2010) Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service. Am J Med Genet Part A 152(2):327–332

    Article  Google Scholar 

  2. Lammert M, Friedman JM, Kluwe L, Mautner VF (2005) Prevalence of neurofibromatosis 1 in german children at elementary school enrollment. Arch Dermatol 141(1):71–74. https://doi.org/10.1001/archderm.141.1.71

    Article  PubMed  Google Scholar 

  3. Kallionpaa RA, Uusitalo E, Leppavirta J, Poyhonen M, Peltonen S, Peltonen J (2018) Prevalence of neurofibromatosis type 1 in the finnish population. Genet Med 20(9):1082–1086. https://doi.org/10.1038/gim.2017.215

    Article  PubMed  Google Scholar 

  4. Poyhonen M, Kytola S, Leisti J (2000) Epidemiology of neurofibromatosis type 1 (NF1) in northern finland. J Med Genet 37(8):632–636. https://doi.org/10.1136/jmg.37.8.632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Legius E, Messiaen L, Wolkenstein P et al (2021) Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation. Genet Med. https://doi.org/10.1038/s41436-021-01170-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Friedman JM (2002) Neurofibromatosis 1: clinical manifestations and diagnostic criteria. J Child Neurol 17(8):548–554. https://doi.org/10.1177/088307380201700802. discussion 71-2, 646-51

    Article  CAS  PubMed  Google Scholar 

  7. Uusitalo E, Rantanen M, Kallionpaa RA et al (2016) Distinctive Cancer Associations in patients with neurofibromatosis type 1. J Clin Oncol 34(17):1978–1986. https://doi.org/10.1200/JCO.2015.65.3576

    Article  PubMed  Google Scholar 

  8. Evans DG, O’Hara C, Wilding A et al (2011) Mortality in neurofibromatosis 1: in North West England: an assessment of actuarial survival in a region of the UK since 1989. Eur J Hum Genet 19(11):1187–1191. https://doi.org/10.1038/ejhg.2011.113

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wilding A, Ingham SL, Lalloo F et al (2012) Life expectancy in hereditary cancer predisposing diseases: an observational study. J Med Genet 49(4):264–269. https://doi.org/10.1136/jmedgenet-2011-100562

    Article  PubMed  Google Scholar 

  10. Rasmussen SA, Yang Q, Friedman JM (2001) Mortality in neurofibromatosis 1: an analysis using U.S. death certificates. Am J Hum Genet 68(5):1110–1118. https://doi.org/10.1086/320121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Uusitalo E, Kallionpaa RA, Kurki S et al (2017) Breast cancer in neurofibromatosis type 1: overrepresentation of unfavourable prognostic factors. Br J Cancer 116(2):211–217. https://doi.org/10.1038/bjc.2016.403

    Article  CAS  PubMed  Google Scholar 

  12. Suarez-Kelly LP, Yu L, Kline D, Schneider EB, Agnese DM, Carson WE (2019) Increased breast cancer risk in women with neurofibromatosis type 1: a meta-analysis and systematic review of the literature. Hered Cancer Clin Pract 17:12. https://doi.org/10.1186/s13053-019-0110-z

    Article  PubMed  PubMed Central  Google Scholar 

  13. Walters S, Maringe C, Butler J et al (2013) Breast cancer survival and stage at diagnosis in Australia, Canada, Denmark, Norway, Sweden and the UK, 2000–2007: a population-based study. Br J Cancer 108(5):1195–1208. https://doi.org/10.1038/bjc.2013.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carton C, Evans DG, Blanco I et al (2023) ERN GENTURIS tumour surveillance guidelines for individuals with neurofibromatosis type 1. eClinicalMedicine 56. https://doi.org/10.1016/j.eclinm.2022.101818

  15. eviQ Cancer Treatments Online (2023) Cancer Institute NSW, viewed 1 March 2023. https://www.eviq.org.au/

  16. Daly MB, Pal T, AlHilli Z et al (2023) Genetic/Familial High-Risk Assessment: breast, ovarian, and pancreatic, Version 3.2023, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 19(1)

  17. Seminog OO, Goldacre MJ (2015) Age-specific risk of breast cancer in women with neurofibromatosis type 1. Br J Cancer 112(9):1546–1548. https://doi.org/10.1038/bjc.2015.78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sharif S, Moran A, Huson SM et al (2007) Women with neurofibromatosis 1 are at a moderately increased risk of developing breast cancer and should be considered for early screening. J Med Genet 44(8):481–484. https://doi.org/10.1136/jmg.2007.049346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Evans DGR, Kallionpää RA, Clementi M et al (2020) Breast cancer in neurofibromatosis 1: survival and risk of contralateral breast cancer in a five country cohort study. Genet Sci 22(2):398–406

    CAS  Google Scholar 

  20. Howell SJ, Hockenhull K, Salih Z, Evans DG (2017) Increased risk of breast cancer in neurofibromatosis type 1: current insights. Breast Cancer (Dove Med Press) 9:531–536. https://doi.org/10.2147/BCTT.S111397

    Article  PubMed  Google Scholar 

  21. Da Silva AV, Rodrigues FR, Pureza M, Lopes VG, Cunha KS (2015) Breast cancer and neurofibromatosis type 1: a diagnostic challenge in patients with a high number of neurofibromas. BMC Cancer 15:183. https://doi.org/10.1186/s12885-015-1215-z

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhou Y, Pan B, Mao F et al (2012) A hidden breast lump covered by nipple appendices in a patient with von recklinghausen disease: a case report and review of the literature. Clin Breast Cancer 12(1):71–75. https://doi.org/10.1016/j.clbc.2011.07.005

    Article  PubMed  Google Scholar 

  23. Sharif S, Ferner R, Birch JM et al (2006) Second primary tumors in neurofibromatosis 1 patients treated for optic glioma: substantial risks after radiotherapy. J Clin Oncol 24(16):2570–2575. https://doi.org/10.1200/JCO.2005.03.8349

    Article  PubMed  Google Scholar 

  24. Pijpe A, Andrieu N, Easton DF et al (2012) Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK). BMJ 345:e5660. https://doi.org/10.1136/bmj.e5660

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gokalp G, Hakyemez B, Kizilkaya E, Haholu A (2007) Myxoid neurofibromas of the breast: mammographical, sonographical and MRI appearances. Br J Radiol 80(958):e234–e237. https://doi.org/10.1259/bjr/33539044

    Article  CAS  PubMed  Google Scholar 

  26. Thompson S, Kaplan SS, Poppiti RJ Jr, Collado-Mesa F, Rabinovich K (2012) Solitary neurofibroma of the breast. Radiol Case Rep 7(4):462. https://doi.org/10.2484/rcr.v7i4.462

    Article  PubMed  Google Scholar 

  27. Maani N, Westergard S, Yang J et al (2019) NF1 patients receiving breast Cancer screening: insights from the Ontario High Risk breast screening program. Cancers (Basel) 11(5). https://doi.org/10.3390/cancers11050707

  28. Wanders JO, Holland K, Veldhuis WB et al (2017) Volumetric breast density affects performance of digital screening mammography. Breast Cancer Res Treat 162(1):95–103. https://doi.org/10.1007/s10549-016-4090-7

    Article  PubMed  Google Scholar 

  29. Acciavatti RJ, Lee SH, Reig B et al (2023) Beyond breast density: risk measures for breast Cancer in multiple imaging modalities. Radiology 306(3):e222575. https://doi.org/10.1148/radiol.222575

    Article  PubMed  Google Scholar 

  30. Mautner VF, Granstrom S, Leark RA (2015) Impact of ADHD in adults with neurofibromatosis type 1: associated psychological and social problems. J Atten Disord 19(1):35–43. https://doi.org/10.1177/1087054712450749

    Article  PubMed  Google Scholar 

  31. Ferner RE, Hughes RA, Weinman J (1996) Intellectual impairment in neurofibromatosis 1. J Neurol Sci 138(1–2): 125 – 33 DOI 10.1016/0022-510x(96)00022 – 6

  32. Crawford HA, Barton B, Wilson MJ et al (2015) The impact of neurofibromatosis type 1 on the Health and Wellbeing of australian adults. J Genet Couns 24(6):931–944. https://doi.org/10.1007/s10897-015-9829-5

    Article  PubMed  Google Scholar 

  33. Biglia N, Bounous VE, Martincich L et al (2011) Role of MRI (magnetic resonance imaging) versus conventional imaging for breast cancer presurgical staging in young women or with dense breast. Eur J Surg Oncol (EJSO) 37(3):199–204

    Article  CAS  PubMed  Google Scholar 

  34. Salem DS, Kamal RM, Mansour SM, Salah LA, Wessam R (2013) Breast imaging in the young: the role of magnetic resonance imaging in breast cancer screening, diagnosis and follow-up. J Thorac Dis 5(Suppl 1):S9–S18. https://doi.org/10.3978/j.issn.2072-1439.2013.05.02

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lord SJ, Lei W, Craft P et al (2007) A systematic review of the effectiveness of magnetic resonance imaging (MRI) as an addition to mammography and ultrasound in screening young women at high risk of breast cancer. Eur J Cancer 43(13):1905–1917. https://doi.org/10.1016/j.ejca.2007.06.007

    Article  CAS  PubMed  Google Scholar 

  36. Riedl CC, Luft N, Bernhart C et al (2015) Triple-modality screening trial for familial breast cancer underlines the importance of magnetic resonance imaging and questions the role of mammography and ultrasound regardless of patient mutation status, age, and breast density. J Clin Oncol 33(10):1128–1135. https://doi.org/10.1200/JCO.2014.56.8626

    Article  PubMed  PubMed Central  Google Scholar 

  37. Checka CM, Chun JE, Schnabel FR, Lee J, Toth H (2012) The relationship of mammographic density and age: implications for breast cancer screening. AJR Am J Roentgenol 198(3):W292–W295. https://doi.org/10.2214/AJR.10.6049

    Article  PubMed  Google Scholar 

  38. Kelemen LE, Pankratz VS, Sellers TA et al (2008) Age-specific trends in mammographic density: the Minnesota breast Cancer Family Study. Am J Epidemiol 167(9):1027–1036. https://doi.org/10.1093/aje/kwn063

    Article  PubMed  Google Scholar 

  39. Crook A, Kwa R, Ephraums S et al (2021) The psychological impact and experience of breast cancer screening in young women with an increased risk of breast cancer due to neurofibromatosis type 1. Fam Cancer. https://doi.org/10.1007/s10689-021-00259-9

    Article  PubMed  PubMed Central  Google Scholar 

  40. Radiology ACo, D’Orsi CJ (2013) ACR BI-RADS atlas: breast imaging reporting and data system; mammography, ultrasound, magnetic resonance imaging, follow-up and outcome monitoring, data dictionary. ACR, American College of Radiology

  41. Mall S, Noakes J, Kossoff M et al (2018) Can digital breast tomosynthesis perform better than standard digital mammography work-up in breast cancer assessment clinic? Eur Radiol 28(12):5182–5194

    Article  CAS  PubMed  Google Scholar 

  42. Porter GJ, Evans AJ, Lee AH, Hamilton LJ, James JJ (2006) Unusual benign breast lesions. Clin Radiol 61(7):562–569. https://doi.org/10.1016/j.crad.2006.02.008

    Article  CAS  PubMed  Google Scholar 

  43. Warner E, Plewes DB, Hill KA et al (2004) Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA 292(11):1317–1325. https://doi.org/10.1001/jama.292.11.1317

    Article  CAS  PubMed  Google Scholar 

  44. Saslow D, Boetes C, Burke W et al (2007) American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 57(2):75–89. https://doi.org/10.3322/canjclin.57.2.75

    Article  PubMed  Google Scholar 

  45. Australian Institute of Health and Welfare (2022) BreastScreen Australia monitoring report 2022. Australian Institute of Health and Welfare

  46. Warner E, Messersmith H, Causer P, Eisen A, Shumak R, Plewes D (2008) Systematic review: using magnetic resonance imaging to screen women at high risk for breast cancer. Ann Intern Med 148(9):671–679. https://doi.org/10.7326/0003-4819-148-9-200805060-00007

    Article  PubMed  Google Scholar 

  47. Boyd NF, Guo H, Martin LJ et al (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356(3):227–236. https://doi.org/10.1056/NEJMoa062790

    Article  CAS  PubMed  Google Scholar 

  48. Mandelson MT, Oestreicher N, Porter PL et al (2000) Breast density as a predictor of mammographic detection: comparison of interval-and screen-detected cancers. J Natl Cancer Inst 92(13):1081–1087

    Article  CAS  PubMed  Google Scholar 

  49. Wanders JOP, Holland K, Karssemeijer N et al (2017) The effect of volumetric breast density on the risk of screen-detected and interval breast cancers: a cohort study. Breast Cancer Res 19(1):67. https://doi.org/10.1186/s13058-017-0859-9

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vachon CM, van Gils CH, Sellers TA et al (2007) Mammographic density, breast cancer risk and risk prediction. Breast Cancer Res 9(6):217. https://doi.org/10.1186/bcr1829

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ziv E, Tice J, Smith-Bindman R, Shepherd J, Cummings S, Kerlikowske K (2004) Mammographic density and estrogen receptor status of breast cancer. Cancer Epidemiol Biomarkers Prev 13(12):2090–2095

    Article  CAS  PubMed  Google Scholar 

  52. McCormack VA, dos Santos Silva I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15(6):1159–1169. https://doi.org/10.1158/1055-9965.EPI-06-0034

    Article  PubMed  Google Scholar 

  53. Rebolj M, Assi V, Brentnall A, Parmar D, Duffy SW (2018) Addition of ultrasound to mammography in the case of dense breast tissue: systematic review and meta-analysis. Br J Cancer 118(12):1559–1570. https://doi.org/10.1038/s41416-018-0080-3

    Article  PubMed  PubMed Central  Google Scholar 

  54. Assi V, Warwick J, Cuzick J, Duffy SW (2012) Clinical and epidemiological issues in mammographic density. Nat Reviews Clin Oncol 9(1):33–40. https://doi.org/10.1038/nrclinonc.2011.173

    Article  CAS  Google Scholar 

  55. Chiarelli AM, Prummel MV, Muradali D et al (2014) Effectiveness of screening with annual magnetic resonance imaging and mammography: results of the initial screen from the ontario high risk breast screening program. J Clin Oncol 32(21):2224–2230. https://doi.org/10.1200/JCO.2013.52.8331

    Article  PubMed  Google Scholar 

  56. Narayan AK, Visvanathan K, Harvey SC (2016) Comparative effectiveness of breast MRI and mammography in screening young women with elevated risk of developing breast cancer: a retrospective cohort study. Breast Cancer Res Treat 158(3):583–589. https://doi.org/10.1007/s10549-016-3912-y

    Article  PubMed  Google Scholar 

  57. Kuhl C, Weigel S, Schrading S et al (2010) Prospective multicenter cohort study to refine management recommendations for women at elevated familial risk of breast cancer: the EVA trial. J Clin Oncol 28(9):1450–1457. https://doi.org/10.1200/JCO.2009.23.0839

    Article  PubMed  Google Scholar 

  58. Arasu VA, Miglioretti DL, Sprague BL et al (2019) Population-Based Assessment of the Association between magnetic resonance imaging background parenchymal enhancement and future primary breast Cancer Risk. J Clin Oncol 37(12):954–963. https://doi.org/10.1200/JCO.18.00378

    Article  PubMed  PubMed Central  Google Scholar 

  59. Grimm LJ, Anderson AL, Baker JA et al (2015) Interobserver variability between breast imagers using the Fifth Edition of the BI-RADS MRI Lexicon. AJR Am J Roentgenol 204(5):1120–1124. https://doi.org/10.2214/AJR.14.13047

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the patients and clinicians who gave their time and supported this study. In addition, we wish to thank Dr Rachel O’Connell for providing statistical support for the analysis of our early findings.

Funding

This study was funded by the Children’s Tumour Foundation and The Honourable Brad Hazzard, NSW Minister for Health and Medical Research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design, material preparation, data collection and analysis. The first draft of the manuscript was written by Mathilda Wilding and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mathilda Wilding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. This study was approved by the Northern Sydney Local Health District Human Research Ethics Committee (NSLHD HREC) REGIS 2020/ ETH00762.

Consent to participate

Informed consent was obtained from all individuals included in the study.

Consent to publish

The authors affirm that patients signed informed consent regarding publishing their data and photographs.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilding, M., Fleming, J., Moore, K. et al. Clinical and imaging modality factors impacting radiological interpretation of breast screening in young women with neurofibromatosis type 1. Familial Cancer 22, 499–511 (2023). https://doi.org/10.1007/s10689-023-00340-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-023-00340-5

Keywords

Navigation