Skip to main content
Log in

Insight Into Foam Properties of Natural Saponins with Low-pH and High-Temperature Tolerance from Xanthoceras sorbifolium Bunge Leaves for Industry Applications

  • Research
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

In foam products, awareness of sustainable approaches has focused attention on the replacement of synthetic surfactants with natural alternatives. However, commonly used natural surfactants are sensitive to acidity and high temperature, which reduce the foaming property. In this study, the physicochemical and foam properties of natural saponins from Xanthoceras sorbifolium Bunge leaves (XLs) as foam agents under industry-relevant conditions were studied. Results found that XLs saponins exhibited remarkable foaming ability and foam stability and resistance to low-pH and high-temperature. Further, the decrease in pH and the increase in temperature could decrease the surface tension. In addition, conductivity, particle size and zeta potential results showed that decreasing pH and increasing temperature could reduce the critical micelle concentration values of XLs saponins, thus forming additional micelles and increasing the viscoelasticity of the saponins solution. The enhancement of these properties contributed to forming a foam with favorable stability at low-pH and high-temperature. Such XLs saponins are promising natural alternatives to traditional food or cosmetic foaming agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. A. Arzhavitina, H. Steckel, Int. J. Pharmaceut. 394(1–2), 1–17 (2010)

    Article  CAS  Google Scholar 

  2. W. Li, L. Zhu, F. Zhang, C. Han, H. Xiang, J. Jiang, Surf. Interfaces 29, 101707 (2022)

  3. D.J. McClements, S.M. Jafari, Adv. Colloid Interface 251, 55–79 (2018)

    Article  CAS  Google Scholar 

  4. C. Hill, J. Eastoe, Adv. Colloid Interface 247, 496–513 (2017)

    Article  CAS  Google Scholar 

  5. E. Rio, W. Drenckhan, A. Salonen, D. Langevin, Adv. Colloid Interface 205, 74–86 (2014)

    Article  CAS  Google Scholar 

  6. A.K. Asghari, I. Norton, T. Mills, P. Sadd, F. Spyropoulos, Food Hydrocoll. 53, 311–319 (2016)

    Article  CAS  Google Scholar 

  7. A. Saint-Jalmes, M.L. Peugeot, H. Ferraz, D. Langevin, Colloid Surf. A 263(1–3), 219–225 (2005)

    Article  CAS  Google Scholar 

  8. D. Lundberg, G. Lafitte, H. Ljusberg-Wahren, P. Lennernaes, K. Thuresson, J. Disper. Sci. Technol. 30(6), 920–928 (2009)

    Article  CAS  Google Scholar 

  9. A. Pradhan, S. Bhuyan, K. Chhetri, S. Mandal, A. Bhattacharyya, Colloid Surf. A 643, 128778 (2022)

  10. B. Chassaing, O. Koren, J.K. Goodrich et al., Nature 519(7541), 92-U192 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D.J. McClements, C.E. Gumus, Adv. Colloid Interface 234, 3–26 (2016)

    Article  CAS  Google Scholar 

  12. M. Nooshkam, M. Varidi, F. Alkobeisi, Food Hydrocoll. 126, 107488 (2022)

  13. L. Ma, Q. Li, Z. Du et al., Adv. Mater. Interfaces 6(14), 1900417 (2019).

  14. Y. Lang, Y. Sun, Y. Feng, Z. Qi, M. Yu, K. Song, Bot. Rev 86(2), 136–148 (2020)

    Article  Google Scholar 

  15. X. Chen, Z. Lei, J. Cao et al., J. Ethnopharmacol. 283, 114747 (2022)

  16. X. Chen, Z. Lei, F. Cao, Q. Guo, J. Wang, J. Food Meas. Charact. 17(1), 916–932 (2022)

    Article  Google Scholar 

  17. M. Hadidi, A. Ibarz, J. Pagan, Food Chem. 309, 125786 (2020)

  18. T.B. Schreiner, G. Colucci, A. Santamaria-Echart et al., Colloid Surf. A 623, 126748 (2021)

  19. J. Zhu, Z. Qian, M. Eid et al., Food Hydrocoll. 112, 106275 (2021)

  20. A. Dan, G. Gochev, J. Kraegel, E.V. Aksenenko, V.B. Fainerman, R. Miller, Curr. Opin. Colloid In. 18(4), 302–310 (2013)

    Article  CAS  Google Scholar 

  21. J. Sun, C. Chang, Y. Su, L. Gu, Y. Yang, J. Li, Food Hydrocoll. 122, 107088 (2022)

  22. P.J. Gonzalez, P.M. Sorensen, Food Hydrocoll. 101, 105541 (2020)

  23. I.B. Cam, A. Topuz, J. Food Process. Eng. 41(1), e12605 (2018)

  24. M. Dabestani, S. Yeganehzad, R. Miller, Colloid Surf. A 630, 127594 (2021)

  25. E.A. Foegeding, J.P. Davis, Food Hydrocoll. 25(8), 1853–1864 (2011)

    Article  CAS  Google Scholar 

  26. D. McClements, Curr Opin Colloid In. 9(5), 305-313(2004)

  27. J. Surh, E.A. Decker, D.J. McClements, Food Hydrocoll. 20(5), 596–606 (2006)

    Article  CAS  Google Scholar 

  28. C. Leal, E. Moniri, L. Pegado, H. Wennerstrom, J. Phy. Chem. B 111(21), 5999–6005 (2007)

    Article  CAS  Google Scholar 

  29. K. Golemanov, S. Tcholakova, N. Denkov, E. Pelan, S.D. Stoyanov, Soft Matter 9(24), 5738–5752 (2013)

    Article  CAS  Google Scholar 

  30. D. Glikman, N. Garcia Rey, M. Richert, K. Meister, B. Braunschweig, J. Colloid Interface Sci. 607(Pt 2), 1754–1761 (2022)

    Article  CAS  PubMed  Google Scholar 

  31. M.G. Cabezas, A. Bateni, J.M. Montanero, A.W. Neumann, Langmuir 22(24), 10053–10060 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. B.D. Ribeiro, D.S. Alviano, D.W. Barreto, M.A. Zarur Coelho, Colloid Surf. A 436, 736–743 (2013)

  33. S.-T. Muntaha, M.N. Khan, J. Clean. Prod. 93, 145–150 (2015)

    Article  CAS  Google Scholar 

  34. S. Balakrishnan, S. Varughese, A.P. Deshpande, Tenside Surf. Det. 43(5), 262–268 (2006)

    Article  CAS  Google Scholar 

  35. R. Shi, Y. Liu, Y. Ma, P. Zhao, Z. Jiang, J. Hou, J. Agric. Food Chem. 70(10), 3252–3262 (2022)

    Article  CAS  PubMed  Google Scholar 

  36. R. Shi, W. Chen, F. Pan et al., Food Hydrocoll. 124, 107259(2022)

  37. S. Tsibranska, S. Tcholakova, K. Golemanov, N. Denkov, E. Pelan, S.D. Stoyanov, J. Colloid Interface Sci. 564, 264–275 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study has been supported by National key research and development program of China (No. 2022YFD1300902) and the Research Institute of X. sorbifolia from Weifang City, China.

Author information

Authors and Affiliations

Authors

Contributions

Xianqiang Chen: Conceptualization, Methodology, Software, Investigation, Writing - Original Draft. Xinyu Chu and Xue Li: Validation, Formal analysis, and Writing- Review & Editing. Fuliang Cao: Funding acquisition. Erzheng Su: Funding acquisition. Wangsheng Zhu, Funding acquisition. Shouke Li, Funding acquisition. Jiahong Wang: Conceptualization, Writing- Review & Editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Jiahong Wang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4.45 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Chu, X., Li, X. et al. Insight Into Foam Properties of Natural Saponins with Low-pH and High-Temperature Tolerance from Xanthoceras sorbifolium Bunge Leaves for Industry Applications. Food Biophysics 18, 545–555 (2023). https://doi.org/10.1007/s11483-023-09798-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-023-09798-3

Keywords

Navigation