Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 16, 2023

A Cd(II) MOF based on 5-ethoxyisophthalate and 1,3-bis(4-pyridyl)propane ligands with a twofold interpenetrated crystal structure showing room temperature phosphorescence

  • Ying-Jun Chen , Pei-Pei Yin , Shu-Xian Ren , Zhi-Hua Li and Xiao-Gang Yang EMAIL logo

Abstract

A metal-organic framework (MOF) {[Cd(EtOIPA)(bpp)(H2O)]·2H2O} n (1) has been synthesized under basic hydrothermal conditions by using of 5-ethoxyisophthalic acid (EtOIPAH2) and 1,3-bis(4-pyridyl)propane (bpp) as reagents for cadmium nitrate. Compound 1 was characterized by elemental analysis, single-crystal X-ray diffraction and UV/Vis spectroscopy. In 1, the bpp ligands extend the EtOIPA-Cd chains along the ab plane to form a 2-fold 3D interpenetrating network. Compound 1 emits blue phosphorescence at room temperature with a long lifetime of 4.2 ms.


Corresponding author: Xiao-Gang Yang, College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan Province, 471934, P.R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors disclose receipt of the following financial support for the research, authorship, and/or publication of this article: We acknowledge financial support from the National Natural Science Foundation of China (Nos. 21971100 and 22171123), Project for Science & Technology Innovation Talents in Universities of Henan Province (No. 21HASTIT006). Scientific Research Projects of Henan Province (Grants 212102210638 and 2019GGJS198).

  3. Conflict of interest statement: The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

1. Qu, Y. X., Liao, P. Y., Chen, Y. C., Tong, Mi. L. Coord. Chem. Rev. 2023, 475, 214880; https://doi.org/10.1016/j.ccr.2022.214880.Search in Google Scholar

2. Yang, X. G., Zhang, J. R., Tian, X. K., Qin, J. H., Zhang, X. Y., Ma, L. F. Angew. Chem. Int. Ed. 2023, 62, e202216699; https://doi.org/10.1002/anie.202216699.Search in Google Scholar PubMed

3. Wang, F., Hu, J., Peng, Y., Wu, X., Xue, H., Pang, H. Adv. Sensor. Energy. Mater. 2023, 378, 100053; https://doi.org/10.1016/j.asems.2023.100053.Search in Google Scholar

4. Dang, L. L., Zhang, T. T., Chen, T., Zhao, Y., Gao, X., Aznarez, F., Ma, L. F., Jin, G. X. Angew. Chem. Int. Ed. 2023, 62, e202301516; https://doi.org/10.1002/anie.202301516.Search in Google Scholar PubMed

5. Kaur, H., Sundriyal, S., Pachauri, V., Ingebrandt, S., Kim, K. H., Sharma, A. L., Deep, A. Coord. Chem. Rev. 2019, 401, 213077; https://doi.org/10.1016/j.ccr.2019.213077.Search in Google Scholar

6. Yang, X. G., Zhai, Z. M., Lu, X. M., Qin, J. H., Li, F. F., Ma, L. F. Inorg. Chem. 2020, 59, 10395–10399; https://doi.org/10.1021/acs.inorgchem.0c01415.Search in Google Scholar PubMed

7. Yuan, G., Tan, L., Wang, P., Wang, Y., Wang, C., Yan, H., Wang, Y. Y. Cryst. Growth Des. 2022, 22, 893–908; https://doi.org/10.1021/acs.cgd.1c01071.Search in Google Scholar

8. Zhao, Y., Cui, Y., Xie, L., Geng, K., Wu, J., Meng, X., Hou, H. Inorg. Chem. 2023, 62, 1240–1249; https://doi.org/10.1021/acs.inorgchem.2c03970.Search in Google Scholar PubMed

9. Yang, X. G., Lu, X. M., Zhai, Z. M., Zhao, Y., Liu, X. Y., Ma, L. F., Zang, S. Q. Chem. Commun. 2019, 55, 11099–11102; https://doi.org/10.1039/c9cc05708k.Search in Google Scholar PubMed

10. Wang, Y., Yang, Q., Yi, F., Lu, R., Chen, Y., Liu, C., Li, X., Wang, C., Yan, H. ACS Appl. Mater. Interfaces 2021, 13, 29916‒29925.10.1021/acsami.1c06008Search in Google Scholar PubMed

11. Kang, L. L., Xing, C., Jin, Y. X., Xie, L. X., Li, Z. F., Li, G. Inorg. Chem. 2023, 62, 3036‒13046.10.1021/acs.inorgchem.2c03758Search in Google Scholar PubMed

12. Yang, X. G., Yan, D. Chem. Sci. 2016, 7, 4519‒4526.10.1039/C6SC00563BSearch in Google Scholar

13. Xie, L. X., Ye, Z. J., Zhang, X. D., Li, G. J. Solid State Chem. 2022, 311, 123154; https://doi.org/10.1016/j.jssc.2022.123154.Search in Google Scholar

14. Liu, L., Lu, X. Y., Zhang, M. L., Ren, Y. X., Wang, J. J., Yang, X. G. Inorg. Chem. Front. 2022, 9, 2676–2682; https://doi.org/10.1039/d2qi00404f.Search in Google Scholar

15. Qin, J. H., Huang, Y. D., Zhao, Y., Yang, X. G., Li, F. F., Wang, C., Ma, L. F. Inorg. Chem. 2019, 58, 15013–15016; https://doi.org/10.1021/acs.inorgchem.9b02203.Search in Google Scholar PubMed

16. Hou, X., Wang, J., Mousavi, B., Klomkliang, N., Chaemchuen, S. Dalton Trans. 2022, 51, 8133–8159; https://doi.org/10.1039/d2dt01030e.Search in Google Scholar PubMed

17. Zhao, X. L., Sun, W. Y. CrystEngComm 2014, 16, 3247–3258; https://doi.org/10.1039/c3ce41791c.Search in Google Scholar

18. Wu, Y. P., Tian, J. W., Liu, S., Li, B., Zhao, J., Ma, L. F., Li, D. S., Lan, Y. Q., Bu, X. Angew. Chem. Int. Ed. 2019, 58, 12185–12189; https://doi.org/10.1002/anie.201907136.Search in Google Scholar PubMed

19. Zhang, Y., Yuan, S., Day, G., Wang, X., Yang, X., Zhou, H. Coord. Chem. Rev. 2018, 354, 28–35; https://doi.org/10.1016/j.ccr.2017.06.007.Search in Google Scholar

20. Wang, Q. X., Inorg, L. G. Chem. Front. 2021, 8, 572–589; https://doi.org/10.1039/d0qi01055c.Search in Google Scholar

21. Kabe, R., Adachi, C. Nature 2017, 550, 384–387; https://doi.org/10.1038/nature24010.Search in Google Scholar PubMed

22. Ma, Y. J., Hu, J. X., Han, S. D., Pan, J., Li, J. H., Wang, G. M. Chem. Commun. 2019, 55, 5631–5634; https://doi.org/10.1039/c9cc02229e.Search in Google Scholar PubMed

23. Zhou, B., Yan, D., Liang, S. R., Li, M., Zhao, J. Adv. Funct. Mater. 2023, 33, 2300735. https://doi.org/10.1007/s00296-022-05189-y.Search in Google Scholar PubMed

24. Gao, R., Kodaimatic, M. S., Yan, D. Chem. Soc. Rev. 2021, 50, 5564–5589; https://doi.org/10.1039/d0cs01463j.Search in Google Scholar PubMed

25. Li, D., Yang, X., Yan, D. ACS Appl. Mater. Interfaces 2018, 10, 34377–34384; https://doi.org/10.1021/acsami.8b11039.Search in Google Scholar PubMed

26. Wang, H. R., Yang, X. G., Qin, J. H., Ma, L. F. Inorg. Chem. Front. 2021, 8, 1942–1950; https://doi.org/10.1039/d0qi01508c.Search in Google Scholar

27. Yang, X. G., Lu, X. M., Zhai, Z. M., Qin, J. H., Chang, X. H., Han, M. L., Li, F. F., Ma, L. F. Inorg. Chem. Front. 2020, 7, 2224–2230; https://doi.org/10.1039/d0qi00191k.Search in Google Scholar

28. Li, Y., Gai, T., Lin, Y., Zhang, W., Li, K., Liu, Y., Duan, Y., Li, B., Ding, J., Li, J. Inorg. Chem. Front. 2020, 7, 777–785; https://doi.org/10.1039/c9qi01273g.Search in Google Scholar

29. Zhao, Y., Yang, X. G., Lu, X. M., Yang, C. D., Fan, N. N., Yang, Z. T., Wang, L. Y., Ma, L. F. Inorg. Chem. 2019, 58, 6215–6221; https://doi.org/10.1021/acs.inorgchem.9b00450.Search in Google Scholar PubMed

30. Zhang, M. L., Bai, Y., Yang, X. G., Zheng, Y. J., Ren, Y. X., Wang, J. J., Han, M. L., Li, F. F., Ma, L. F. Dalton Trans. 2020, 49, 9961–9964; https://doi.org/10.1039/d0dt01810d.Search in Google Scholar PubMed

31. Yang, X. G., Zhai, Z. M., Liu, X. Y., Li, J. Y., Li, F. F., Ma, L. F. Dalton Trans. 2020, 49, 598–602; https://doi.org/10.1039/c9dt04046c.Search in Google Scholar PubMed

32. Yang, J., Zhen, X., Wang, B., Gao, X., Ren, Z., Wang, J., Xie, Y., Li, J., Peng, Q., Pu, K., Li, Z. Nat. Commun. 2018, 9, 840; https://doi.org/10.1038/s41467-018-03236-6.Search in Google Scholar PubMed PubMed Central

33. CrysAlis Pro Software System (version 1.171.38.41r). Intelligent Data Collection and Processing Software for Small Molecule and Protein Crystallography; Rigaku Oxford Diffraction: Yarnton, Oxfordshire, U. K., 2015.Search in Google Scholar

34. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

Received: 2023-03-29
Accepted: 2023-05-14
Published Online: 2023-06-16
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0019/html
Scroll to top button