Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 16, 2023

Structure determination through powder X-ray diffraction, Hirshfeld surface analysis, and DFT studies of 2- and 4-(methylthio)benzoic acid

  • Paramita Chatterjee ORCID logo EMAIL logo

Abstract

2-(methylthio)benzoic acid (1) is an ortho-substituted benzoic acid derivative, whereas 4-(methylthio)benzoic acid (2) is a para-substituted benzoic acid derivative. The structural analysis of both compounds was carried out using PXRD data. 2-(methylthio)benzoic acid shows a triclinic system with the P 1 space group, whereas 4-(methylthio)benzoic acid shows a monoclinic system and crystallizes in the P21/a space group. The strength, as well as relative contributions of intermolecular hydrogen bonds, have been examined through Hirshfeld surfaces as well as 2D fingerprint plots. A weak intramolecular hydrogen bond was found only in the case of ortho-substituted 2-(methylthio)benzoic acid. Supramolecular frameworks for 1 are formed by the interplay of intramolecular and intermolecular interactions, whereas for 2, intermolecular contacts form supramolecular assemblies. Intermolecular O–H⋯O interactions involving carboxyl groups form the R22(8) graph-set motif for both compounds. Theoretical DFT calculations using the B3LYP correlation functional reveal that the energy gap of HOMO–LUMO orbitals in compound 1, with the methylthio moiety in the ortho position relative to the carboxyl group, is lower than that of compound 2, with the methylthio moiety in the para position. Vertical and adiabatic ionization energies are also calculated for both compounds.


Corresponding author: Paramita Chatterjee, Department of Physics, Lady Brabourne College, Kolkata 700017, India, E-mail:

Acknowledgements

The author is thankful to Prof. Alok Kumar Mukherjee, Secretary of the Institute of Business Management and former professor of Jadavpur University, for his valuable and constructive suggestions for this work.

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Richards, R. M. E., Xing, D. K. L. The effect of p-aminobenzoic acid on the uptake of thymidine and uracil by Escherichia coli. Int. J. Pharm. 1995, 116, 217–221; https://doi.org/10.1016/0378-5173(94)00303-m.Search in Google Scholar

2. Cao, Y.-G., Zhang, L., Ma, C., Chang, B.-B., Chen, Y.-C., Tang, Y.-Q., Liu, X.-D., Liu, X.-Q. Metabolism of protocatechuic acid influences fatty oxidation in rat heart: new anti-angina mechanism implication. Biochem. Pharmacol. 2009, 77, 1096–1104; https://doi.org/10.1016/j.bcp.2008.11.029.Search in Google Scholar PubMed

3. Tanaka, T., Tanaka, T., Tanaka, M. Potential cancer chemopreventive activity of protocatechuic acid. J. Exp. Clin. Med. 2011, 3, 27–33; https://doi.org/10.1016/j.jecm.2010.12.005.Search in Google Scholar

4. Olmo, A. D., Calzada, J., Nunez, M. Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: uses, exposure, and controversy. Crit. Rev. Food Sci. Nutr. 2017, 57, 3084–3103; https://doi.org/10.1080/10408398.2015.1087964.Search in Google Scholar PubMed

5. Guo, M., Ni, J., Yu, J., Ma, L., Zhang, H., Wang, D., Zhang, X., Dou, J., Zhou, C. Antiviral activity of benzoic acid derivative NC-5 against influenza A virus and its neuraminidase inhibition. Int. J. Mol. Sci. 2019, 20, 6261 (1‒15); https://doi.org/10.3390/ijms20246261.Search in Google Scholar PubMed PubMed Central

6. Swislocka, R., Samsonowicz, M., Regulska, E., Lewandowski, W. Molecular structure of 4-aminobenzoic acid salts with alkali metals. J. Mol. Struct. 2006, 792, 227–238; https://doi.org/10.1016/j.molstruc.2005.10.060.Search in Google Scholar

7. Bohm, S., Exner, O. Steric inhibition of resonance: a revision and quantitative estimation on the basis of aromatic carboxylic acids. Chem. Eur. J. 2000, 6, 3391–3398; https://doi.org/10.1002/1521-3765(20000915)6:18<3391::aid-chem3391>3.0.co;2-x.10.1002/1521-3765(20000915)6:18<3391::AID-CHEM3391>3.0.CO;2-XSearch in Google Scholar

8. Bohm, S., Fiedler, P., Exner, O. Analysis of the ortho effect: acidity of 2-substituted benzoic acids. New J. Chem. 2004, 28, 67–74; https://doi.org/10.1039/b305986c.Search in Google Scholar

9. Pytela, O., Kulhánek, J. Ortho effect in dissociation of benzoic acids with electron-acceptor substituents using the AISE theory; relation to para substitution and solvent. Collect. Czech. Chem. Commun. 2002, 67, 596–608; https://doi.org/10.1135/cccc20020596.Search in Google Scholar

10. Coetzee, J. F., Cunningham, G. P. Hydrogen bonding and the ortho effect in acetonitrile. Reaction of ortho-substituted benzoic acids with amines. J. Am. Chem. Soc. 1965, 87, 2534–2539; https://doi.org/10.1021/ja01090a002.Search in Google Scholar

11. Fujita, T., Nishioka, T. The analysis of the ortho effect. Prog. Phys. Org. Chem. 1976, 12, 49–89.10.1002/9780470171912.ch3Search in Google Scholar

12. Boogaard, P. J., Lempers, E. L., Mulders, G. J., Meerman, J. H. 4-Methylthiobenzoic acid reduces cisplatin nephrotoxicity in rats without compromising anti-tumour activity. Biochem. Pharmacol. 1991, 41, 1997–2003; https://doi.org/10.1016/0006-2952(91)90141-q.Search in Google Scholar PubMed

13. Kroese, E. D., Zeilmaker, M. J., Mohn, G. R., Meerman, J. H. N. Preventive action of thioethers towards in vitro DNA binding and mutagenesis in E. coli K12 by alkylating agents. Mutat. Res. 1990, 245, 67–74; https://doi.org/10.1016/0165-7992(90)90002-2.Search in Google Scholar PubMed

14. Guzmán-Afonso, C., Hong, Y. l., Colaux, H., Iijima, H., Saitow, A., Fukumura, T., Aoyama, Y., Motoki, S., Oikawa, T., Yamazaki, T., Yonekura, K., Nishiyama, Y. Understanding hydrogen-bonding structures of molecular crystals via electron and NMR nanocrystallography. Nat. Commun. 2019, 10, 3537–3547; https://doi.org/10.1038/s41467-019-11469-2.Search in Google Scholar PubMed PubMed Central

15. Desiraju, G. R. Crystal Engineering: The Design of Organic Solids; Elsevier: New York, 1989.Search in Google Scholar

16. Jeffrey, G. A., Saenger, W. Hydrogen Bonding in Biological Structures; Springer: Berlin, 1991.10.1007/978-3-642-85135-3Search in Google Scholar

17. Guo, F., Yu, H., Li, L., Xia, F., Tong, J., Wang, B. Halogen anion-directed helical host chain and the effect of halogen anions on the inclusion property. Supramol. Chem. 2013, 25, 173–179; https://doi.org/10.1080/10610278.2012.741686.Search in Google Scholar

18. Thakuria, R., Sarma, B., Nangia, A. Hydrogen bonding in molecular crystals. Compr. Supramol. Chem. II 2017, 7, 25–48.10.1016/B978-0-12-409547-2.12598-3Search in Google Scholar

19. David, W. I. F. Extending the power of powder diffraction for structure determination. Nature 1990, 346, 731–734; https://doi.org/10.1038/346731a0.Search in Google Scholar

20. Harris, K. D. M., Tremayne, M., Kariuki, B. M. Comtemporary advances in the use of powder X-ray diffraction for structure determination. Angew. Chem. Int. Ed. 2001, 40, 1626–1651; https://doi.org/10.1002/1521-3773(20010504)40:9<1626::aid-anie16260>3.0.co;2-7.10.1002/1521-3773(20010504)40:9<1626::AID-ANIE16260>3.0.CO;2-7Search in Google Scholar

21. David, W. I. F., Shankland, K. Structure determination from powder diffraction data. Acta Crystallogr. 2008, A64, 52–64; https://doi.org/10.1107/s0108767307064252.Search in Google Scholar

22. Altomare, A., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Rizzi, R., Werner, P. E. New techniques for indexing: N-TREOR in EXPO. J. Appl. Crystallogr. 2000, 33, 1180–1186; https://doi.org/10.1107/s0021889800006427.Search in Google Scholar

23. Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., Falcicchio, A. Expo 2013: a kit of tools for phasing crystal structures from powder data. J. Appl. Crystallogr. 2013, 46, 1231–1235; https://doi.org/10.1107/s0021889813013113.Search in Google Scholar

24. Tayone, J. C., Del Rosario, R. M. Molecular modeling of debromolaurinterol isolated from sea hare (Aplysia kurodai) using MOPAC Software. Int. J. Comput. 2016, 20, 42–50.Search in Google Scholar

25. Harris, K. D. M., Tremayne, M., Lightfoot, P., Bruce, P. G. Crystal structure determination from powder diffraction data by Monte Carlo methods. J. Am. Chem. Soc. 1994, 116, 3543–3547; https://doi.org/10.1021/ja00087a047.Search in Google Scholar

26. Andreev, Yu. G., Lightfoot, P., Bruce, P. G. General Monte Carlo approach to structure solution from powder-diffraction data: application to poly(ethylene oxide)3:LiN(SO2 CF3)2. J. Appl. Crystallogr. 1997, 30, 294–305; https://doi.org/10.1107/s0021889896013556.Search in Google Scholar

27. Coelho, A. A. Whole-profile structure solution from powder diffraction data using simulated annealing. J. Appl. Crystallogr. 2000, 33, 899–908; https://doi.org/10.1107/s002188980000248x.Search in Google Scholar

28. Favre-Nicolin, V., Cerny, R. A better FOX: using flexible modeling and maximum likelihood to improve direct-space ab initio structure determination from powder diffraction. Z. Kristallogr. 2004, 219, 847–856; https://doi.org/10.1524/zkri.219.12.847.55869.Search in Google Scholar

29. Toby, B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213; https://doi.org/10.1107/s0021889801002242.Search in Google Scholar

30. Larson, A. C., Von Dreele, R. B. GSAS General Structure Analysis System; Los Almos National Laboratory Report LAUR: Los Alamos, New Mexico, 2000; pp. 86–748.Search in Google Scholar

31. Rietveld, H. M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 1967, 22, 151–152; https://doi.org/10.1107/s0365110x67000234.Search in Google Scholar

32. Karunakar, P., Chakraverty, S. Shifted Chebyshev polynomials based solution of partial differential equations. SN Appl. Sci. 2019, 1, 285.10.1007/s42452-019-0292-zSearch in Google Scholar

33. Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 1977, 44, 129–138; https://doi.org/10.1007/bf00549096.Search in Google Scholar

34. Spackman, M. A., Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32; https://doi.org/10.1039/b818330a.Search in Google Scholar

35. Spackman, M. A., McKinnon, J. J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392; https://doi.org/10.1039/b203191b.Search in Google Scholar

36. Parkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A., Wilson, C. C. Comparing entire crystal structures: structural genetic fingerprinting. CrystEngComm 2007, 9, 648–652; https://doi.org/10.1039/b704177b.Search in Google Scholar

37. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., Spackman, M. A. Crystal Explorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011; https://doi.org/10.1107/s1600576721002910.Search in Google Scholar PubMed PubMed Central

38. Neese, F. The Orca program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78; https://doi.org/10.1002/wcms.81.Search in Google Scholar

39. Neese, F., Wennmohs, F., Becker, U., Riplinger, C. The Orca quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108, 1‒18; https://doi.org/10.1063/5.0004608.Search in Google Scholar PubMed

40. Ibragimov, A. B., Ashurov, J. M., Ibragimov, A. B., Eshimbetov, A. G. Synthesis of the three mixed-ligand metal complexes and one organic salt of 3,5-dinitrobenzoic acid for biopharmaceutical optimization through monoethanolamine: structures and DFT studies of complexes. J. Chem. Crystallogr. 2021, 51, 405–417; https://doi.org/10.1007/s10870-020-00864-z.Search in Google Scholar

41. Weigend, F., Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305; https://doi.org/10.1039/b508541a.Search in Google Scholar PubMed

42. Yuan, Y., Wang, F. A comparison of three DFT exchange-correlation functionals and two basis sets for the prediction of the conformation distribution of hydrated polyglycine. J. Chem. Phys. 2021, 155, 094104; https://doi.org/10.1063/5.0059669.Search in Google Scholar PubMed PubMed Central

43. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100; https://doi.org/10.1103/physreva.38.3098.Search in Google Scholar PubMed

44. Lee, C., Yang, W., Parr, G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789; https://doi.org/10.1103/physrevb.37.785.Search in Google Scholar PubMed

45. Bursch, M., Mewes, J. M., Hansen, A., Grimme, S. Best-practice DFT protocols for basic molecular computational chemistry. Angew. Chem. 2022, 134, e202205735; https://doi.org/10.1002/anie.202205735.Search in Google Scholar PubMed PubMed Central

46. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., Hutchison, G. R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 1–17; https://doi.org/10.1186/1758-2946-4-17.Search in Google Scholar PubMed PubMed Central

47. Domingo, L. R., Ríos-Gutiérrez, M., Pérez, P. Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 2016, 21, 748, 1‒22; https://doi.org/10.3390/molecules21060748.Search in Google Scholar PubMed PubMed Central

48. Pearson, R. G. Chemical hardness and density functional theory. J. Chem. Sci. 2005, 117, 369–377; https://doi.org/10.1007/bf02708340.Search in Google Scholar

49. Parr, R. G., Szentpaly, L. V., Liu, S. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922–1924; https://doi.org/10.1021/ja983494x.Search in Google Scholar

50. Boldyrev, A. I., Simons, J., Zakrzewski, V. G., Niessen, W. Vertical and adiabatic ionization energies and electron affinities of new SinC and SinO (n = 1−3) molecules. J. Phys. Chem. 1994, 98, 1427–1435; https://doi.org/10.1021/j100056a010.Search in Google Scholar

51. Ortiz, J. V. Calculations of the vertical and adiabatic ionization energies of (H2S)2. Chem. Phys. Lett. 1986, 134, 366–370; https://doi.org/10.1016/0009-2614(87)87154-3.Search in Google Scholar

52. Chutia, T., Kalita, D. J. Theoretical investigation of fused N-methyl-dithieno-pyrrole derivatives in the context of acceptor-donor-acceptor approach. RSC Adv. 2022, 12, 14422–14434; https://doi.org/10.1039/d2ra01820a.Search in Google Scholar PubMed PubMed Central

53. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

54. Gerkin, R. E. 2-(Isopropylthio)benzoic acid. Acta Crystallogr. 1999, C55, 1190–1192; https://doi.org/10.1107/s0108270199005582.Search in Google Scholar PubMed

55. Steiner, T. S–H⋯S hydrogen-bond chain in thiosalicylic acid. Acta Crystallogr. 2000, C56, 876–877; https://doi.org/10.1107/s0108270100005898.Search in Google Scholar PubMed

56. Pavan, M. S., Sarkar, S., Guru Row, T. N. Exploring the rare S–H⋯S hydrogen bond using charge density analysis in isomers of mercaptobenzoic acid. Acta Crystallogr. 2017, B73, 626–633; https://doi.org/10.1107/s2052520617008344.Search in Google Scholar PubMed

57. Benazic, S., Silconi, Z. B., Jevtovic, A., Jurisevic, M., Milovanovic, J., Mijajlovic, M., Nikolic, M., Kanjevac, T., Potocnak, I., Samolova, E., Ratkovic, Z. R., Radic, G., Milovanovic, M., Pantic, J., Arsenijevic, N., Radosavljevic, G. D. The Zn(S-pr-thiosal)2 complex attenuates murine breast cancer growth by inducing apoptosis and G1/S cell cycle arrest. Future Med. Chem. 2020, 12, 897–914; https://doi.org/10.4155/fmc-2019-0215.Search in Google Scholar PubMed

58. Aihara, J. Reduced HOMO-LUMO Gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J. Phys. Chem. A 1999, 103, 7487–7495; https://doi.org/10.1021/jp990092i.Search in Google Scholar

59. Mulliken, R. Electronic population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J. Chem. Phys. 1955, 23, 1841–1846; https://doi.org/10.1063/1.1740589.Search in Google Scholar

60. Mulliken, R. Criteria for the construction of good self-consistent-field molecular orbital wave functions, and the significance of LCAO-MO population analysis. J. Chem. Phys. 1962, 36, 3428–3439; https://doi.org/10.1063/1.1732476.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2022-0069).


Received: 2022-12-06
Accepted: 2023-05-30
Published Online: 2023-06-16
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0069/html
Scroll to top button