Skip to main content
Log in

Bacteria Associated with the Antarctic Endemic Insect Belgica antarctica Jacobs (Diptera Chironomidae)

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Insects are one of the most successful groups of multicellular organisms with more than a million species. Among them, there is Belgica antarctica Jacobs (Diptera Chironomidae) representing an endemic species of Antarctica that exists under extremely cold conditions. A significant number of microorganisms colonize most species of insects resulting in symbiotic interaction, which may improve the adaptability of a host organism to cold conditions. Using PCR and metagenomic analysis, it has been demonstrated that endosymbiotic bacteria Spiroplasma and Wolbachia seem to be absent in Belgica antarctica. Nevertheless, 14 species of bacteria have been revealed that can be potentially associated with Belgica antarctica and/or with the substrate where this species lives by screening the whole-genome sequences available in open databases. To ascertain the constant association of identified microorganisms with Belgica antarctica and their possible preference to this species, it is necessary to perform further analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Camerota, M., Simoni, S., Giaimo, R.D., et al., Influences of Wolbachia (Rickettsiales Rickettsiaceae) on the cellular response to cold stress in Drosophila melanogaster (Diptera Drosophilidae), Redia, 2015, vol. 98, pp. 145–148.

    Google Scholar 

  2. Chown, S.L. and Convey, P., Antarctic entomology, Annu. Rev. Entomol., 2016, vol. 61, pp. 119–137. https://doi.org/10.1146/annurev-ento-010715-023537

    Article  CAS  PubMed  Google Scholar 

  3. Coelho, L.P., Alves, R., del Río, Á.R., et al., Towards the biogeography of prokaryotic genes, Nature, 2022, vol. 601, pp. 252–256. https://doi.org/10.1038/s41586-021-04233-4

    Article  CAS  PubMed  Google Scholar 

  4. Contador, T., Gañan, M., Bizama, G., et al., Assessing distribution shifts and ecophysiological characteristics of the only Antarctic winged midge under climate change scenarios, Sci. Rep., 2020, vol. 10, pp. 9087. https://doi.org/10.1038/s41598-020-65571-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Convey, P. and Block, W., Antarctic diptera: Ecology, physiology and distribution, Eur. J. Entomol., 1996, vol. 93, pp. 1–13.

    Google Scholar 

  6. Duron, O., Bouchon, D., Boutin, S., et al., The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone, BMC Biol., 2008, vol. 6, p. 27. https://doi.org/10.1186/1741-7007-6-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Engel, P. and Moran, N.A., The gut microbiota of insects – diversity in structure and function, FEMS Microbiol. Rev., 2013, vol. 37, pp. 699–735. https://doi.org/10.1111/1574-6976.12025

    Article  CAS  PubMed  Google Scholar 

  8. Feldhaar, H., Bacterial symbionts as mediators of ecologically important traits of insect hosts, Ecol. Entomol., 2011, vol. 36, pp. 533–543. https://doi.org/10.1111/j.1365-2311.2011.01318.x

    Article  Google Scholar 

  9. Folmer, O., Black, M., Hoeh, W., et al., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Mol. Mar. Biol. Biotechnol., 1994, vol. 3, pp. 294–299. PMID: 7881515

    CAS  PubMed  Google Scholar 

  10. Fusco, V., Abriouel, H., Benomar, N., et al., Opportunistic Food-Borne Pathogens, in Food Safety and Preservation, Grumezescu, A.M., and Holban. A.M., Eds., Academic, 2018, pp. 269–306. https://doi.org/10.1016/B978-0-12-814956-0.00010-X

  11. Gasparich, G.E., Spiroplasmas and phytoplasmas: microbes associated with plant hosts, Biologicals, 2010, vol. 38, pp. 193–203. https://doi.org/10.1016/j.biologicals.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  12. Gomila, M., Bowien, B., Falsen, E., et al., Description of Pelomonas aquatica sp. nov. and Pelomonas puraquae sp. nov., isolated from industrial and haemodialysis water, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 2629–2635. https://doi.org/10.1099/ijs.0.65149-0

    Article  CAS  PubMed  Google Scholar 

  13. Grimont, F. and Grimont, P.A.D., The Genus Serratia, in The Prokaryotes: A Handbook on the Biology of Bacteria, Proteobacteria: Gamma Subclass, Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., Eds., New York: Springer-Verlag, 2006, vol. 6, pp. 219–244.

    Google Scholar 

  14. Gurung, K., Wertheim, B., and Falcao Salles, J., The microbiome of pest insects: it is not just bacteria, Entomol. Exp. Appl., 2019, vol. 167, pp. 156–170. https://doi.org/10.1111/eea.12768

    Article  Google Scholar 

  15. Henry, Y. and Colinet, H., Microbiota disruption leads to reduced cold tolerance in Drosophila flies, Sci. Nat., 2018, vol. 105, p. 59. https://doi.org/10.1007/s00114-018-1584-7

    Article  CAS  Google Scholar 

  16. Holmes, C.J., Jennings, E.C., Gantz, J.D., et al., The Antarctic mite, Alaskozetes antarcticus, shares bacterial microbiome community membership but not abundance between adults and tritonymphs, Polar Biol., 2019, vol. 42, pp. 2075–2085. https://doi.org/10.1007/s00300-019-02582-5

    Article  Google Scholar 

  17. Hughes, K.A., Worland, M.R., Thorne, M.A.S., and Convey, P., The non-native chironomid Eretmoptera murphyi in Antarctica: erosion of the barriers to invasion, Biol. Invasions, 2013, vol. 15, pp. 269–281. https://doi.org/10.1007/s10530-012-0282-1

    Article  Google Scholar 

  18. Jaramillo, A. and Castañeda, L.E., Gut microbiota of Drosophila subobscura contributes to its heat tolerance and is sensitive to transient thermal stress, Front. Microbiol., 2021, vol. 12, p. 654108. https://doi.org/10.3389/fmicb.2021.654108

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kageyama, A., Matsumoto, A., Ōmura, S., and Takahashi, Y., Humibacillus xanthopallidus gen. nov., sp. nov, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 1547–1551. https://doi.org/10.1099/ijs.0.65042-0

    Article  CAS  PubMed  Google Scholar 

  20. Kelley, J.L., Peyton, J.T., Fiston-Lavier, A.-S., et al., Compact genome of the Antarctic midge is likely an adaptation to an extreme environment, Nat. Commun., 2014, vol. 5, p. 4611. https://doi.org/10.1038/ncomms5611

    Article  CAS  PubMed  Google Scholar 

  21. Konai, M., Clark, E.A., Camp, M., et al., Temperature Ranges, Growth Optima, and Growth Rates of Spiroplasma (Spiroplasmataceae, class Mollicutes) Species, Curr. Microbiol., 1996, vol. 32, pp. 314–319. https://doi.org/10.1007/s002849900056

    Article  CAS  PubMed  Google Scholar 

  22. Kovalenko, P., Trokhymets, V., Parnikoza, I., et al., Current status of Belgica antarctica Jacobs, 1900 (Diptera: Chironomidae) distribution by the data of Ukrainian Antarctic Expeditions, Ukr. Antarct. J., 2021, vol. 2, pp. 76–93. https://doi.org/10.33275/1727-7485.2.2021.679

    Article  Google Scholar 

  23. Lau, M.-J., Ross, P.A., Endersby-Harshman, N.M., and Hoffmann, A.A., Impacts of Low Temperatures on Wolbachia (Rickettsiales: Rickettsiaceae)-Infected Aedes aegypti (Diptera: Culicidae), J. Med. Entomol., 2020, vol. 57, pp. 1567–1574. https://doi.org/10.1093/jme/tjaa074

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lo, W.-S., Ku, C., Chen, L.-L., et al., Comparison of metabolic capacities and inference of gene content evolution in mosquito-associated Spiroplasma diminutum and S. taiwanense, Genome Biol. Evol., 2013, vol. 5, pp. 1512–1523. https://doi.org/10.1093/gbe/evt108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maistrenko, O.M., Serga, S.V., Vaiserman, A.M., and Kozeretska, I.A., Effect of Wolbachia infection on aging and longevity-associated genes in Drosophila, in Life Extension: Lessons from Drosophila, Vaiserman, A.M., Moskalev, A.A., and Pasyukova, E.G., Eds., Springer-Verlag, 2015, pp. 83–104. https://doi.org/10.1007/978-3-319-18326-8_4

  26. Maistrenko, O.M., Serga, S.V., Vaiserman, A.M., and Kozeretska, I.A., Longevity-modulating effects of symbiosis: insights from DrosophilaWolbachia interaction, Biogerontology, 2016, vol. 17, pp. 785–803. https://doi.org/10.1007/s10522-016-9653-9

    Article  CAS  PubMed  Google Scholar 

  27. Massey, J.H. and Newton, I.L.G., Diversity and function of arthropod endosymbiont toxins, Trends Microbiol., 2022, vol. 30, pp. 185–198. https://doi.org/10.1016/j.tim.2021.06.008

    Article  CAS  PubMed  Google Scholar 

  28. Milanese, A., Mende, D.R., Paoli, L., et al., Microbial abundance, activity and population genomic profiling with mOTUs2, Nat. Commun., 2019, vol. 10, p. 1014. https://doi.org/10.1038/s41467-019-08844-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mollerup, S., Friis-Nielsen, J., Vinner, L., et al., Propionibacterium acnes: Disease-causing agent or common contaminant? Detection in diverse patient samples by next-generation sequencing, J. Clin. Microbiol., 2016, vol. 54, pp. 980–987. https://doi.org/10.1128/JCM.02723-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ochyra, R., Lewis-Smith, R.I., and Bednarek-Ochyra, H., The Illustrated Moss Flora of Antarctica, Cambridge: Cambridge Univ., 2008.

    Google Scholar 

  31. Oh, W.T., Giri, S.S., Yun, S., et al., Janthinobacterium lividum as an emerging pathogenic bacterium affecting rainbow trout (Oncorhynchus mykiss) fisheries in Korea, Pathogens, 2019, vol. 8, p. E146. https://doi.org/10.3390/pathogens8030146

    Article  CAS  Google Scholar 

  32. O’Neill, S.L., Giordano, R., Colbert, A.M., et al., 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects, Proc. Nat. Acad. Sci., 1992, vol. 89, pp. 2699–2702. https://doi.org/10.1073/pnas.89.7.2699

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pavinato, V.A.C., Wijeratne, S., Spacht, D., et al., Leveraging targeted sequencing for non-model species: a step-by-step guide to obtain a reduced SNP set and a pipeline to automate data processing in the Antarctic Midge, Belgica Antarctica, bioRxiv, 2019, p. 772384. https://doi.org/10.1101/772384

  34. Potocka, M. and Krzemińska, E., Trichocera macu-lipennis (Diptera)–an invasive species in Maritime Antarctica, Peer J., 2018, vol. 6, p. e5408. https://doi.org/10.7717/peerj.5408

    Article  PubMed  PubMed Central  Google Scholar 

  35. Reddy, G.S.N., Matsumoto, G.I., Schumann, P., et al., Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov., Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 713–719. https://doi.org/10.1099/ijs.0.02827-0

    Article  CAS  PubMed  Google Scholar 

  36. Ruscheweyh, H.-J., Milanese, A., Paoli, L., et al., mOTUs: Profiling taxonomic composition, transcriptional activity and strain populations of microbial communities, Curr. Protoc., 2021, vol. 1, p. e218. https://doi.org/10.1002/cpz1.218

    Article  CAS  PubMed  Google Scholar 

  37. Teets, N.M., Peyton, J.T., Colinet, H., et al., Gene expression changes governing extreme dehydration tolerance in an Antarctic insect, Proc. Nat. Acad. Sci., 2012, vol. 109, pp. 20744–20749. https://doi.org/10.1073/pnas.1218661109

    Article  PubMed  PubMed Central  Google Scholar 

  38. Timmis, K.N., Pseudomonas putida: a cosmopolitan opportunist par excellence, Environ. Microbiol., 2002, vol. 4, pp. 779–781. https://doi.org/10.1046/j.1462-2920.2002.00365.x

    Article  PubMed  Google Scholar 

  39. Richard, K.J., Convey, P., and Block, W., The terrestrial arthropod fauna of the Byers Peninsula, Livingston Island, South Shetland Islands, Polar Biol., 1994, vol. 14, pp. 371–379. https://doi.org/10.1007/BF00240257

    Article  Google Scholar 

  40. Serga, S.V., Maistrenko, O.M., Matiytsiv, N.P., et al., Effects of Wolbachia infection on fitness-related traits in Drosophila melanogaster, Symbiosis, 2021, vol. 83, pp. 163–172. https://doi.org/10.1007/s13199-020-00743-3

    Article  Google Scholar 

  41. Serga, S.V., Maistrenko, O.M., and Kozeretska, I.A., Wolbachia: an endosymbiont of Drosophila, in Microbial Symbionts Functions and Molecular Interactions on Host, Dhanasekaran, D., Ed., Elsevier, 2023, pp. 599–620.

    Google Scholar 

  42. Sugg, P., Edwards, J.S., and Baust, J., Phenology and life history of Belgica antarctica, an Antarctic midge (Diptera: Chironomidae), Ecol. Entomol., 1983, vol. 8, pp. 105–113. https://doi.org/10.1111/j.1365-2311.1983.tb00487.x

    Article  Google Scholar 

  43. Usher, M.B. and Edwards, M., A dipteran from south of the Antarctic Circle: Belgica antarctica (Chironomidae), with a description of its larvae, Biol. J. Linn. Soc., 1984, vol. 23, pp. 19–31. https://doi.org/10.1111/j.1095-8312.1984.tb00803.x

    Article  Google Scholar 

  44. Wirth, W.W. and Gressitt, J.L., Diptera: Chironomidae (Midges), Antarct. Res. Ser., 1967, vol. 10, pp. 197–203. https://doi.org/10.1029/AR010p0197

  45. Worland, M.R., Eretmoptera murphyi: pre-adapted to survive a colder climate, Physiol. Entomol., 2010, vol. 35, pp. 140–147. https://doi.org/10.1111/j.1365-3032.2010.00722.x

    Article  Google Scholar 

  46. Zhang, D.-C., Schumann, P., Liu, H.-C., et al., Arthrobacter alpinus sp. nov., a psychrophilic bacterium isolated from alpine soil, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 2149–2153. https://doi.org/10.1099/ijs.0.017178-0

    Article  CAS  PubMed  Google Scholar 

  47. Zhou, W., Rousset, F., and O’Neil, S., Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences, Proc. R. Soc. B, 1998, vol. 265, pp. 509–515. https://doi.org/10.1098/rspb.1998.0324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by the State Targeted Scientific and Technical Program of Studies in the Antarctic for the Period of 2011–2023 (resolution no. 1002 of the Cabinet of Ministers of Ukraine from November 3, 2010; https://zakon.rada.gov.ua/laws/show/1002-2010-%D0%BF#n12)). Svitlana Serga was supported by the PAUSE Program (PAUSE-Solidarity with Ukraine; PAUSE ANR Ghandi-Ukraine). Pavlo Kovalenko was supported by a scholarship from the National Academy of Sciences of Ukraine for Young Scientists (decree no. 509 of the Presidium of the National Academy of Sciences of Ukraine from October 31, 2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Maistrenko.

Ethics declarations

The authors declare that they have no conflicts of interest. This paper does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Glushachenkova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maistrenko, O.M., Serga, S.V., Kovalenko, P.A. et al. Bacteria Associated with the Antarctic Endemic Insect Belgica antarctica Jacobs (Diptera Chironomidae). Cytol. Genet. 57, 207–212 (2023). https://doi.org/10.3103/S0095452723030064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723030064

Keywords:

Navigation