Skip to main content
Log in

On Generation Mechanisms of Excessive Horizontal Compression in Continental Crust

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—It is proposed to consider the processes of surface denudation and magmatism in the Earth’s crust to explain the formation in it of elevated horizontal compressive stresses in excess of lithostatic pressure. Rock exhumation only partially unloads the crust due by removing the weight of the overburden if the crust at depth was above the yield point. This is due to the fact that in the case of exhumation, the unloading occurs elastically. As a result, residual horizontal compressive stresses acquired at the stage of supercritical cataclastic flow arise in the rock. Another mechanism to account for the formation of additional compressive stresses in the crust involves volcanic and magmatic processes. Magma ascent along subvertical crustal faults and networks of fractures is only possible if magma pressure at the propagation front is above the level of horizontal compression in the rock. The result is that below the magma propagation front, the level of horizontal compressive stresses in the rocks rises to the level of magma pressure. Because the pressure in the subcrustal or intracrustal magma chamber is close to the lithostatic pressure of the overburden, fault-orthogonal stresses above the magma propagation front in the fault exceed the level of vertical compression. Thus, crustal magmatization is capable of changing the crustal stress state from horizontal extension to horizontal shear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Avsyuk, Yu.N., Extraterrestrial driving forces of tectonics, in Osnovnye problemy global’noi tektoniki (Main Problems of Global Tectonics), Moscow: Nauchn. mir, 2001, pp. 437–441.

  2. Bath, M. and Duda, S.J., Earthquake volume, fault plane area, seismic energy, strain, deformation and related quantieties, Ann. Geofis., 1964, vol. 17, no. 3, pp. 353–368.

    Google Scholar 

  3. Chung, S.-L., Chu, M.-F., Zhang, Y., Xie, Y., Lo, C.-H., Lee, T.-Y., Lan, C.-Y., Li, X., Zhang, Q., and Wang, Y., Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism, Earth-Sci. Rev., 2005, vol. 68, nos. 3–4, pp. 173−196.

    Article  Google Scholar 

  4. Davidenkov, N.N., On residual stresses, in Rentgenografiya v primenenii k issledovaniyu materialov (X-Ray Radiography as Applied to Materials Research), Kurdyumov, G.M., Ed., Moscow–Leningrad: ONTI NKTP Departmental Literature Sector, 1936, pp. 393–401.

  5. Dinnik, A.N., On rock pressure and calculation of round mine support, Inzh. Rab., 1926, no. 3, pp. 1−12.

  6. Dobretsov, N.L., Periodicity and driving forces of volcanism, Russ. Geol. Geophys., 2015, vol. 56, no. 12, pp. 1663–1670. https://doi.org/10.1016/j.rgg.2015.11.001

    Article  Google Scholar 

  7. Dobretsov, N.L. and Chumakov, I.M., Global periodicities in the evolution of lithosphere and biosphere, in Global’nye izmeneniya prirodnoi sredy i evolyutsiya geoprotsessov (Global Change in Natural Environment and Evolution of Geoprocesses), Novosibirsk: SO RAN, 2001, pp. 11–26.

  8. Dobretsov, N.L., Kirdyashkin, A.G., and Kirdyashkin, A.A., Glubinnaya geodinamika (Deep Geodynamics), 2nd ed., Novosibirsk: SO RAN, Geo, 2001.

  9. Dziewonski, A.M., Chou, T.-A., and Woodhouse, J.H., Determination of earthquake source parameters from wave-form data for studies of global and regional seismicity, J. Geophys. Res., 1981, vol. 86, no. B4, pp. 2825–2852.

    Article  Google Scholar 

  10. Ermakov, V.A., Island arcs and their role in the evolution of a continental margin: a new approach to old data, Vulkanol. Seismol., 2005, no. 5, pp. 3–18.

  11. Evzerov, V.Ya., Placer deposits as unique formations in the loose cover of the Baltic Shield, Lithol. Miner. Resour., 2001, vol. 36, no. 2, pp. 109–115.

    Article  Google Scholar 

  12. Glukhovskii, M.Z., The rotation factor and some problems of geotectonics and comparative planetology, Geotectonics, 2005, vol. 39, no. 6, pp. 423–436.

    Google Scholar 

  13. Goodman, R.E., Introduction to Rock Mechanics, New York: Wiley, 1980.

    Google Scholar 

  14. Haxby, W.F. and Turcotte, D.L., Stress induced by the addition or removal of overburden and associated thermal effect, Geology, 1976, no. 3, pp. 181–194.

  15. Herget, G., Variation of rock stresses with depth at Canadion iron mine, Int. J. Rock Mech. Min. Sci., 1973, no. 10, pp. 37−51.

  16. Jaeger, J.C., Elasticity Fracture and Flow, London: Methuen, 1962.

    Google Scholar 

  17. Jaeger, J.C., Rock Mechanick and Engineering, Cambridge: Cambridge Univ. Press, 1972.

    Google Scholar 

  18. Kanamory, H. and Anderson, D.L., Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Am., 1975, vol. 65, pp. 1073−1095.

    Google Scholar 

  19. Kavanagh, J.L., Menand, T., and Sparks, R.S.J., An experimental investigation of sill formation and propagation in layered elastic media, Earth Planet. Sci. Lett., 2006, vol. 245, nos. 3–4, pp. 799−813.

    Article  Google Scholar 

  20. Keilis-Borok, V.I., Study of sources approximately equivalent to earthquake source, Tr. Geofiz. Inst. Akad. Nauk SSSR, 1959, no. 9 (136), pp. 20–42.

  21. Lobkovskii, L.I. and Kotelkin V.D., Two-level thermochemical convection in the mantle and its geodynamic implications, in Problemy global’noi geodinamiki (Problems of Global Geodynamics), Moscow: Geos, 2000, pp. 29–53.

  22. Ma Xinyuan, Tectonic processes reflected on the map of the dynamics of the lithosphere of China, in Geodinamika vnutrikontinental’nykh gornykh oblastei (Geodynamics of Inland Mountain Regions), Logachev, N.A., Ed., Novosibirsk: Nauka, 1990, pp. 341−351.

  23. Makarov, V.I., Alekseev, D.V., Batalev, V.Yu., Bataleva, E.A., Belyaev, I.V., Bragin, V.D., Dergunov, N.T., Efimova, N.N., Leonov, M.G., Munirova, L.M., Pavlenkin, A.D., Roecker, S., Roslov, Yu.V., Rybin, A.K., and Shchelochkov, G.G., Underthrusting of Tarim beneath the Tien Shan and deep structure of their junction zone: main results of seismic experiment along MANAS profile Kashgar–Song-Köl, Geotectonics, 2010, vol. 44, no. 2, pp. 102−126.

    Article  Google Scholar 

  24. Makarov, V.I., Rybin, A.K., Matyukov, V.E., Pushkarev, P.Yu., and Shcherbina, F.A., Deep structure of central Tien Shan depression areas, in Sovremennye problemy geodinamiki i geoekologii vnutrikontinental’nykh orogenov (Modern Problems of Geodynamics and Geoecology of Intracontinental Orogens), vol. 2, Bishkek, NS RAN, 2012, pp. 36–45.

  25. Markov, G.A., Tektonicheskie napryazheniya i gornoe davlenie v rudnikakh Khibinskogo massiva (Tectonic Stresses and Rock Pressure in the Mines of the Khibiny Massif), Leningrad: Nauka, Leningr. Otd., 1977.

  26. Markov, G.A., On the subsurface distribution of the horizontal tectonic stresses in the zones of the Earth’s crust uplifts, Inzh. Geol., 1980, no. 1, pp. 20–30.

  27. Mikhailov, V.O., A mathematical model of the process of evolution of structures formed as a result of vertical movements, Izv., Phys. Solid Earth, 1983, vol. 19, no. 6, pp. 431–441.

    Google Scholar 

  28. Mikhailov, V.O., Modeling the extension and compression of the lithosphere by intraplate forces, Izv., Phys. Solid Earth, 1999, vol. 35, no. 3, pp. 228–238.

    Google Scholar 

  29. Molnar, P. and Tapponnier, P., Cenozoic tectonics of Asia: effects of a continental collision, Science, 1975, vol. 189, no. 4201, pp. 419−426.

    Article  Google Scholar 

  30. Myagkov, D.S. and Rebetskii, Yu.L., Mathematical models simulating the formation of the stress-strain state of epi-platform orogens, Geodin. Tektonofiz., 2019, vol. 10, no. 1, pp. 21−41. https://doi.org/10.5800/GT-2019-10-1-040

    Article  Google Scholar 

  31. Nazarova, L.A., Nazarov, L.A., and Dyad’kov, P.G., Mathematical modeling of kinematics of Central Asian plates, J. Min. Sci., 2002, vol. 38, no. 5, pp. 411–417. https://doi.org/10.1023/A:1023923329058

    Article  Google Scholar 

  32. Nikolaevskii, V.N., Moho discontinuity as a limiting depth of the brittle-dilatational state of rocks, Dokl. Akad. Nauk SSSR, 1979, vol. 249, no. 4, pp. 817−820.

    Google Scholar 

  33. Pollard, D.D. and Segall, P., Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces, in Fracture Mechanics of Rock, Atkinson, B.K., Ed., London: Academic Press, 1987, pp. 277−350.

    Google Scholar 

  34. Pollard, D.D., Muller, O.H., and Dockstader, D.R., The form and growth of fingered sheet intrusions, Geol. Soc. Am. Bull., 1975, vol. 86, no. 3, pp. 351–363.

    Article  Google Scholar 

  35. Ponomarev, V.S., Potential energy of hydrostatic compression of rocks and seismicity, in Tr. Tret’ego Vses. simp. po seismicheskomu rezhimu, chact’ 1 (Proc. 3rd All-Union Symp. on Seismic Regime, Part 1, Novosibirsk: Nauka, 1969, Part 1, pp. 30−55.

  36. Ponomarev, V.S., Energonasyshchennost’ geologicheskoi sredy (Energy Saturation of Geological Medium), Moscow: Nauka, 2008.

  37. Price, N.J. and Cosrove, J.W., Analysis of Geological Stryctyres, Cambridge: Cambridge Univ. Press, 1990.

    Google Scholar 

  38. Rebetskii, Yu.L., Tektonicheskie napryazheniya i prochnost' gornykh massivov (Tectonic Stresses and Strength of Rock Masses), Moscow: Akademkniga, 2007.

  39. Rebetskii, Yu.L., Mechanism of generation of residual stresses and large horizontal compressive stresses in the Earth’s crust of intraplate orogens, in Problemy tektonofiziki k 40-letiyu sozdaniya M.V. Gzovskim laboratorii tektonofiziki v IFZ RAN (Problems of Tectonophysics: To 40th Anniversary of Foundation of the Tectonophysics Laboratory in the Institute of Physics of the Earth RAS by M.V. Gzovskii the), Moscow: IFZ RAN, 2008a, pp. 431−466.

  40. Rebetskii, Yu.L., Mechanism of tectonic stress generation in the zones of large vertical movements, Fiz. Mezomekh., 2008b, vol. 11, no. 1, pp. 66−73.

    Google Scholar 

  41. Rebetskii, Yu.L., Possible mechanism of horizontal compression stress generation in the Earth’s crust, Dokl. Earth Sci., 2008c, vol. 423, no. 2, pp. 1448−1451.

    Article  Google Scholar 

  42. Rebetskii, Yu.L. and Alekseev, R.S., The field of recent tectonic stresses in Central and South-Eastern Asia, Geodyn. Tectonophys., 2014, vol. 5, no. 1, pp. 257−290. https://doi.org/10.5800/GT-2014-5-1-0127

    Article  Google Scholar 

  43. Rebetskii, Yu.L. and Alekseev, R.S., The pattern and possible formation mechanisms of current crustal stress in High Asia, Geol. Geofiz., 2022, vol. 63, no. 6, pp. 726−742.

    Google Scholar 

  44. Rebetskii, Yu.L. and Polets, A.Yu., The stresses in the aftershock area of the March 11, 2011 Tohoku earthquake, Vulkanol. Seismol., 2021, no. 4, pp. 22–44.

  45. Rivalta, E., Taisne, B., Bunger, A.P., and Katz, R.F., A review of mechanical models of dike propagation: Schools of thought, results and future directions, Tectonophysics, 2015, vol. 638, no. 4, pp. 1−42.

    Article  Google Scholar 

  46. Rubin, A.M., Propagation of magma-filled cracks, Annu. Rev. Earth Planet. Sci., 1995, vol. 23, no. 1, pp. 287–336.

    Article  Google Scholar 

  47. Ruzhich, V.V., Seismotektonicheskaya destruktsiya v zemnoi kore Baykal’skoi riftovoi zony (Seismotectonic Destruction in the Earth’s Crust of the Baikal Rift Zone), Novosibirsk: SO RAN, 1997.

  48. Ruzhich, V.V., Kocharyan, G.G., and Levina, E.A., Estimated geodynamic impact from zones of collision and subduction on the seismotectonic regime in the Baikal Rift, Geodin. Tektonofiz., 2016, vol. 7, no. 3, pp. 383–406. https://doi.org/10.5800/GT-2016-7-3-0214

    Article  Google Scholar 

  49. Sidorenko, A.V., Dolednikovye kory vyvetrivaniya Kol’skogo poluostrova (Preglacial Weathering Rinds of the Kola Peninsula), Moscow: AN SSSR, 1958.

  50. Sim, L.A., On relation of sedimentation volume in framing basins with the amount of erosional removal from the Fennoscandinavian Shield in Meso-Cenozoic, Mater. XLIV Tekton. soveshch.: Osadochnye basseiny i geologicheskie predposylki prognoza novykh ob’’ektov, perspektivnykh na neft' i gaz (Proc. 44th Tectonics Conference “Sedimentary Basins and Geological Prerequisites of Prediction of New Objects Promising for Oil and Gas”), Moscow: GEOS, 2012, pp. 398−401.

  51. Sykes, L.R. and Sbar, M.L., Intraplate earthquakes, lithosphere stresses, and the driving mechanism plate tectonics, Nature, 1973, vol. 245, pp. 298–302.

    Article  Google Scholar 

  52. Trubitsyn, V.P., Rheology of the mantle and tectonics of the oceanic lithospheric plates, Izv., Phys. Solid Earth, 2012, vol. 48, no. 6, pp. 467–485.

    Article  Google Scholar 

  53. Trubitsyn, V.P. and Rykov, V.V., Mantle convection with floating continents, in Problemy global’noi geodinamiki (Problems of Global Geodynamics), Moscow: Geos, 2000, pp. 7–28.

  54. Turcotte, D.L., Driving mechanisms for plate tectonics, Geofis. Int., 1973, vol. 13, pp. 309−315.

    Google Scholar 

  55. Turcotte, D.L., Membrane tectonics, Geophys. J. R. Astron. Soc., 1974, vol. 36, pp. 33−42.

    Article  Google Scholar 

  56. Vikhri v geologicheskikh protsessakh (Vortex-Related Events in Geological Processes), Vikulin, A.V., Ed., Petropavlovsk-Kamchatskii: KGPU, 2004.

  57. Vikulin, A.V., Energy and moment of the Earth’s rotation elastic field, Russ. Geol. Geophys., 2008, vol. 49, no. 6, pp. 422–429.

    Article  Google Scholar 

  58. Vlokh, N.P., Lipin, Ya.I., and Sashurin, A.D., Studies of residual stresses in hard rocks, in Sovremennye problemy mekhaniki gornykh porod (Modern Problems of Rock Mechanics), Leningrad: Nauka, 1972, pp. 186–189.

  59. Voigth, B., Beziehugen zwischen grossen horirontalen Spannugen in Gebirgen und der Tektonik und der Abtragung, Proc. 1st Congr. Int. Soc. Rock Mech., Lisobon, 1966, Lisbon: Lab. Nac. Engenharia Civil, 1967, vol. 2, pp. 51–56.

  60. Voigth, B. and St. Pierre, B.H.P., Stress history and rock stress, Proc. 3rd Congr. Int. Soc. Rock Mech., Denver, 1974, vol. 2, pp. 580–582.

  61. Wilson, J.T., Did the Atlantic close and then re-open?, Nature, 1966, vol. 211, pp. 676–681.

    Article  Google Scholar 

  62. Zonenshain, L.P., Savostin, L.A., Misharina, L.A., and Solonenko, N.V., Plate tectonics of the Baikal mountain region and the Stanovoi Ridge, Dokl. Akad. Nauk SSSR, 1978, vol. 240, no. 3, pp. 669–672.

    Google Scholar 

Download references

Funding

The work was carried as part of the state contract with Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. L. Rebetsky.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebetsky, Y.L. On Generation Mechanisms of Excessive Horizontal Compression in Continental Crust. Izv., Phys. Solid Earth 59, 391–404 (2023). https://doi.org/10.1134/S1069351323030102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351323030102

Keywords:

Navigation