Skip to main content
Log in

Theoretical Explanation for the Variability in Platelet Activation through the GPVI Receptor

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract—

One of the key receptors on the surface of platelets, non-nuclear cells responsible for preventing blood loss when blood vessels are damaged, is the receptor for the extracellular matrix protein collagen, glycoprotein VI (GPVI). GPVI triggers tyrosine kinase signaling in platelets, simultaneously initiating calcium signaling via phospholipase Cγ2 (PLCγ2) and phosphoinositide signaling via phosphoinositide-3-kinase (PI3K). Previously, our group demonstrated that among healthy donors there is more than a twofold variability in calcium response to activation through the GPVI receptor. Here, a computer model of platelet activation through the GPVI receptor is proposed to explain this phenomenon. This model is a system of ordinary differential equations integrated with the LSODA method. The model equations were derived from our previously published model of platelet activation via the CLEC-2 receptor. Using the developed model, a monotonic dependence of the degree of platelet activation on the number of GPVI receptors was predicted. An analysis of the sensitivity of the model to its parameters showed that the platelet response to activation through GPVI is determined by the number of GPVI receptors, as well as the catalytic parameters of tyrosine kinases, while a twofold change in the number of receptors is sufficient to explain the observed phenomenon. Thus, it was theoretically predicted that the variability of calcium responses of platelets to their stimulation through the GPVI receptor could be determined by the variability in the number of GPVI receptors on the platelet surface of healthy donors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Panteleev M.A., Sveshnikova A.N. 2014. Platelets and hemostasis. Oncohematologia (Rus.). 9 (2), 65–73.

    Google Scholar 

  2. Sveshnikova A., Stepanyan M., Panteleev M., Sveshnikova A., Stepanyan M., Panteleev M. 2021. Platelet functional responses and signalling: The molecular relationship. Part 1: Responses. Systems Biology and Physiology Reports. 1 (1), 20.

    Article  Google Scholar 

  3. Bergmeier W., Stefanini L. 2009. Novel molecules in calcium signaling in platelets. J. Thromb. Haemostasis. 7, 187–190.

    Article  CAS  Google Scholar 

  4. Martyanov A., Panteleev M. 2021. Platelet functional responses and signalling: The molecular relationship. Part 2: Receptors. SBPR. 1 (3), 13–30.

    Article  Google Scholar 

  5. Gear A.R. 1994. Platelet adhesion, shape change, and aggregation: Rapid initiation and signal transduction events. Can. J. Physiol. Pharmacol. 72 (3), 285–294.

    Article  CAS  PubMed  Google Scholar 

  6. Kaneva V.N., Martyanov A.A., Morozova D.S., Panteleev M.A., Sveshnikova A.N. 2019. Platelet Integrin αIIbβ3: Mechanisms of activation and clustering; Involvement into the formation of the thrombus heterogeneous structure. Biochem. (Moscow) Suppl. Series A, Membr. Cell Biol. 13 (2), 97–110.

    Google Scholar 

  7. Podoplelova N.A., Sveshnikova A.N., Kotova Y.N., Eckly A., Receveur N., Nechipurenko D.Yu., Obydennyi S.I., Kireev I.I., Gachet C., Ataullakhanov F.I., Mangin P.H., Panteleev M.A. 2016. Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting. Blood. 128 (13), 1745–1755.

    Article  CAS  PubMed  Google Scholar 

  8. Bryckaert M., Rosa J.-P., Denis C.V., Lenting P.J. 2015. Of von Willebrand factor and platelets. Cell. Mol. Life Sciences, CMLS. 72 (2), 307–326.

    Article  CAS  PubMed  Google Scholar 

  9. Poulter N.S., Pollitt A.Y., Owen D.M., Gardiner E.E., Andrews R.K., Shimizu H., Ishikawa D., Bihan D., Farndale R.W., Moroi M., Watson S.P., Jung S.M. 2017. Clustering of glycoprotein VI (GPVI) dimers upon adhesion to collagen as a mechanism to regulate GPVI signaling in platelets. J. Thromb. Haemost. 15 (3), 549–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stepanyan M.G., Filkova A.A., Dasgupta A.G., Martyanov A.A., Sveshnikova A.N. 2021. Platelet activation through GPVI receptor: Variability of the response. Biochem. (Moscow) Suppl. Series A, Membr. Cell Biol. 15 (1), 73–81.

    CAS  Google Scholar 

  11. Johnson E.N., Brass L.F., Funk C.D. 1998. Increased platelet sensitivity to ADP in mice lacking platelet-type 12-lipoxygenase. Proc. Natl. Acad. Sci. USA. 95 (6), 3100–3105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pollitt A.Y., Poulter N.S., Gitz E., Navarro-Nuñez L., Wang Y.-J., Hughes C.E., Thomas S.G., Nieswandt B., Douglas M.R., Owen D.M., Jackson D.G., Dustin M.L., Watson S.P. 2014. Syk and Src family kinases regulate C-type lectin receptor 2 (CLEC-2)-mediated clustering of podoplanin and platelet adhesion to lymphatic endothelial cells. J. Biol. Chem. 289 (52), 35695–35710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garzon Dasgupta A.K., Martyanov A.A., Filkova A.A., Panteleev M.A., Sveshnikova A.N. 2020. Development of a simple kinetic mathematical model of aggregation of particles or clustering of receptors. Life. 10 (6), 97.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Watson S.P., Herbert J.M.J., Pollitt A.Y. 2010. GPVI and CLEC-2 in hemostasis and vascular integrity. J. Thromb. Haemost. 8 (7), 1456–1467.

    Article  CAS  PubMed  Google Scholar 

  15. Rayes J., Watson S.P., Nieswandt B. 2019. Functional significance of the platelet immune receptors GPVI and CLEC-2. J. Clin. Invest. 129 (1), 12–23.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Balabin F.A., Sveshnikova A.N. 2016. Computational biology analysis of platelet signaling reveals roles of feedbacks through phospholipase C and inositol 1,4,5-trisphosphate 3-kinase in controlling amplitude and duration of calcium oscillations. Math. Biosci. 276, 67–74.

    Article  CAS  PubMed  Google Scholar 

  17. Sveshnikova A.N., Balatskiy A.V., Demianova A.S., Shepelyuk T.O., Shakhidzhanov S.S., Balatskaya M.N., Pichugin A.V., Ataullakhanov F.I., Panteleev M.A. 2016. Systems biology insights into the meaning of the platelet’s dual-receptor thrombin signaling. J. Thromb. Haemost. 14 (10), 2045–2057.

    Article  CAS  PubMed  Google Scholar 

  18. Jackson S.P., Schoenwaelder S.M. 2010. Procoagulant platelets: Are they necrotic? Blood. 116 (12), 2011–2018.

    Article  CAS  PubMed  Google Scholar 

  19. Podoplelova N.A., Nechipurenko D.Y., Ignatova A.A., Sveshnikova A.N., Panteleev M.A. 2021. Procoagulant platelets: Mechanisms of generation and action. Hämostaseologie. 41 (02), 146–153.

    Article  CAS  PubMed  Google Scholar 

  20. Martyanov A.A., Balabin F.A., Dunster J.L., Panteleev M.A., Gibbins J.M., Sveshnikova A.N. 2020. Control of platelet CLEC-2-mediated activation by receptor clustering and tyrosine kinase signaling. Biophys. J. 118 (11), 2641–2655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moroi M., Jung S.M. 2004. Platelet glycoprotein VI: Its structure and function. Thromb. Res. 114 (4), 221–233.

    Article  CAS  PubMed  Google Scholar 

  22. Furihata K., Clemetson K.J., Deguchi H., Kunicki T.J. 2001. Variation in human platelet glycoprotein VI content modulates glycoprotein VI-specific prothrombinase activity. Arterioscler. Thromb. Vasc. Biol. 21 (11), 1857–1863.

    Article  CAS  PubMed  Google Scholar 

  23. Best D., Senis Y.A., Jarvis G.E., Eagleton H.J., Roberts D.J., Saito T., Jung S.M., Moroi M., Harrison P., Green F.R., Watson S.P. 2003. GPVI levels in platelets: Relationship to platelet function at high shear. Blood. 102 (8), 2811–2818.

    Article  CAS  PubMed  Google Scholar 

  24. Hoops S., Sahle S., Gauges R., Lee C., Pahle J., Simus N., Singhal M., Xu L., Mendes P., Kummer U. 2006. COPASI – a COmplex PAthway SImulator. Bioinformatics. 22 (24), 3067–3074.

    Article  CAS  PubMed  Google Scholar 

  25. Petzold L., Hindmarsh A. 1997. LSODA (Livermore solver of ordinary differential equations). Computing and Mathematics Research Division, Lawrence Livermore National Laboratory, Livermore, CA, 24.

  26. Burkhart J.M., Vaudel M., Gambaryan S., Radau S., Walter U., Martens L., Geiger J., Sickmann A., Zahedi R.P. 2012. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood. 120 (15), e73–e82.

    Article  CAS  PubMed  Google Scholar 

  27. Back T. 1996. Evolutionary algorithms in theory and practice: Evolution strategies, evolutionary programming, genetic algorithms. Oxford: Oxford University Press.

    Book  Google Scholar 

  28. Saltelli A., Ratto M., Tarantola S., Campolongo F. 2005. Sensitivity analysis for chemical models. Chem. Rev. 105 (7), 2811–2828.

    Article  CAS  PubMed  Google Scholar 

  29. Martyanov A.A., Balabin F.A., Mayorov A.S., Shamova E.V., Panteleev M.A., Sveshnikova A.N. 2018. Computer simulation of intracellular signalling during activation of blood platelets by fucoidan. Biol. Membrany (Rus.). 35 (5), 364–375.

    Google Scholar 

  30. Dunster J.L., Mazet F., Fry M.J., Gibbins J.M., Tindall M.J. 2015. Regulation of early steps of GPVI signal transduction by phosphatases: A systems biology approach. PLoS Comput. Biol. 11 (11), e1004589.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rayes J., Watson S.P., Nieswandt B. 2019. Functional significance of the platelet immune receptors GPVI and CLEC-2. J. Clin. Invest. 129 (1), 12–23.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Senis Y.A., Mazharian A., Mori J. 2014. Src family kinases: At the forefront of platelet activation. Blood. 124 (13), 2013–2024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Séverin S., Pollitt A.Y., Navarro-Nuñez L., Nash C.A., Mourão-Sá D., Eble J.A., Senis Y.A., Watson S.P. 2011. Syk-dependent phosphorylation of CLEC-2. J. Biol. Chem. 286 (6), 4107–4116.

    Article  PubMed  Google Scholar 

  34. Burkhart J.M., Vaudel M., Gambaryan S., Radau S., Walter U., Martens L., Geiger J., Sickmann A., Zahedi R.P. 2012. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood. 120 (15), e73–e82.

    Article  CAS  PubMed  Google Scholar 

  35. Quinter P.G., Quinton T.M., Dangelmaier C.A., Kunapuli S.P., Daniel J.L. 2005. Role of lipid rafts in GPVI agonist-induced platelet signaling. Blood. 106 (11), 3576.

    Article  Google Scholar 

  36. Miura Y., Takahashi T., Jung S.M., Moroi M. 2002. Analysis of the interaction of platelet collagen receptor glycoprotein VI (GPVI) with collagen. A dimeric form of GPVI, but not the monomeric form, shows affinity to fibrous collagen. J. Biol. Chem. 277 (48), 46197–46204.

    Article  CAS  PubMed  Google Scholar 

  37. Kemble D.J., Wang Y.H., Sun G. 2006. Bacterial expression and characterization of catalytic loop mutants of Src protein tyrosine kinase. Biochemistry. 45 (49), 14749–14754.

    Article  CAS  PubMed  Google Scholar 

  38. Bradshaw J.M. 2010. The Src, Syk, and Tec family kinases: Distinct types of molecular switches. Cell. Signal. 22 (8), 1175–1184.

    Article  CAS  PubMed  Google Scholar 

  39. Ren L., Chen X., Luechapanichkul R., Selner N.G., Meyer T.M., Wavreille A.-S., Chan R., Iorio C., Zhou X., Neel B.G., Pei D. 2011. Substrate specificity of protein tyrosine phosphatases 1B, RPTPα, SHP-1, and SHP-2. Biochemistry. 50 (12), 2339–2356.

    Article  CAS  PubMed  Google Scholar 

  40. Lin X., Lee S., Sun G. 2003. Functions of the activation loop in Csk protein-tyrosine kinase. J. Biol. Chem. 278 (26), 24072–24077.

    Article  CAS  PubMed  Google Scholar 

  41. Park M.J., Sheng R., Silkov A., Jung D.J., Wang Z.G., Xin Y., Kim H., Thiagarajan-Rosenkranz P., Song S., Yoon Y., Nam W., Kim I., Kim E., Lee D.G., Chen Y., Singaram I., Wang L., Jang M.H., Hwang C.S., Honig B., Ryu S., Lorieau J., Kim Y.M., Cho W. 2016. SH2 domains serve as lipid-binding modules for pTyr-signaling proteins. Mol. Cell. 62 (1), 7–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsang E., Giannetti A.M., Shaw D., Dinh M., Tse J.K.Y., Gandhi S., Ho A., Wang S., Papp E., Bradshaw J.M. 2008. Molecular mechanism of the Syk activation switch. J. Biol. Chem. 283 (47), 32650–32659.

    Article  CAS  PubMed  Google Scholar 

  43. Hughes C.E., Sinha U., Pandey A., Eble J.A., O’Callaghan C.A., Watson S.P. 2013. Critical role for an acidic amino acid region in platelet signaling by the HemITAM (hemi-immunoreceptor tyrosine-based activation motif) containing receptor CLEC-2 (C-type lectin receptor-2). J. Biol. Chem. 288 (7), 5127–5135.

    Article  CAS  PubMed  Google Scholar 

  44. Sveshnikova A.N., Balatskiy A.V., Demianova A.S., Shepelyuk T.O., Shakhidzhanov S.S., Balatskaya M.N., Pichugin A.V., Ataullakhanov F.I., Panteleev M.A. 2016. Systems biology insights into the meaning of the platelet’s dual-receptor thrombin signaling. J. Thromb. Haemost. 14 (10), 2045–2057.

    Article  CAS  PubMed  Google Scholar 

  45. Ahmed M.U., Kaneva V., Loyau S., Nechipurenko D., Receveur N., Le Bris M., Janus-Bell E., Didelot M., Rauch A., Susen S., Chakfé N., Lanza F., Gardiner E.E., Andrews R.K., Panteleev M., Gachet C., Jandrot-Perrus M., Mangin P.H. 2020. Pharmacological blockade of glycoprotein VI promotes thrombus disaggregation in the absence of thrombin. Arterioscler. Thromb. Vasc. Biol. 40 (9), 2127–2142.

    Article  CAS  PubMed  Google Scholar 

  46. Montague S.J., Delierneux C., Lecut C., Layios N., Dinsdale R.J., Lee C.S.-M., Poulter N.S., Andrews R.K., Hampson P., Wearn C.M., Maes N., Bishop J., Bamford A., Gardiner C., Lee W.M., Iqbal T., Moiemen N., Watson S.P., Oury C., Harrison P., Gardiner E.E. 2018. Soluble GPVI is elevated in injured patients: Shedding is mediated by fibrin activation of GPVI. Blood Adv. 2 (3), 240–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Montague S.J., Andrews R.K., Gardiner E.E. 2018. Mechanisms of receptor shedding in platelets. Blood. 132 (24), 2535–2545.

    Article  CAS  PubMed  Google Scholar 

  48. Al-Tamimi M., Tan C.W., Qiao J., Pennings G.J., Javadzadegan A., Yong A.S.C., Arthur J.F., Davis A.K., Jing J., Mu F.-T., Hamilton J.R., Jackson S.P., Ludwig A., Berndt M.C., Ward C.M., Kritharides L., Andrews R.K., Gardiner E.E. 2012. Pathologic shear triggers shedding of vascular receptors: A novel mechanism for down-regulation of platelet glycoprotein VI in stenosed coronary vessels. Blood. 119 (18), 4311–4320.

    Article  CAS  PubMed  Google Scholar 

  49. Yakusheva A.A., Butov K.R., Bykov G.A., Závodszky G., Eckly A., Ataullakhanov F.I., Gachet C., Panteleev M.A., Mangin P.H. 2022. Traumatic vessel injuries initiating hemostasis generate high shear conditions. Blood Adv. 6 (16), 4834–4846.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research and London Royal Community (project no. 21-51-10005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Sveshnikova.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Martyanov

   Abbreviations: CRP, collagen related peptide; DTS, dense tubular system; ER, endoplasmic reticulum; GPVI, glycoprotein VI; IP3, inositol-1,4,5-triphosphate; IP3R, IP3 receptor; LAT, linker adapter T-cell protein; PLCγ2, phospholipase Cγ2; PMCA, plasma membrane calcium ATPase; PRP, platelet rich plasma; SERCA, sarcoplasmic/endoplasmic reticulum calcium ATPase; VWF, von Willebrand factor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martyanov, A.A., Stepanyan, M.G. & Sveshnikova, A.N. Theoretical Explanation for the Variability in Platelet Activation through the GPVI Receptor. Biochem. Moscow Suppl. Ser. A 17, 83–91 (2023). https://doi.org/10.1134/S1990747823020046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747823020046

Keywords

Navigation