Skip to main content
Log in

Activation of the Cannabinoid Receptors Suppresses Hyperexcitation of Rat Hippocampal Neuronal Networks In Vitro

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract—

Cannabinoid receptors (CBRs) play a key role in various physiological processes, including neurogenesis, synaptic plasticity, immune modulation, cell apoptosis, metabolism regulation, cardiovascular and reproductive systems activity. Since activation of CBRs suppresses hyperexcitation and protects cells from death, their modulation may have therapeutic prospects in the treatment of such pathologies of the nervous system as mental disorders, epilepsy, Parkinson’s and Huntington’s disease, multiple sclerosis, spinal cord and brain injuries. This paper presents experimental data on the effects of the cannabinoid receptor agonist WIN 55,212-2 on the induced oscillations of intracellular Ca2+ concentration ([Ca2+]i) in two in vitro models of epileptiform activity. To study the neuroprotective properties of WIN 55,212-2, hyperexcitation was induced by the application of a GABA(A) receptor antagonist, bicuculline, or depolarizing doses of ammonium chloride. As experiments have shown, WIN 55,212-2 at a concentration of 100 nM and above significantly suppresses the [Ca2+]i oscillations frequency and reduces the basal [Ca2+]i level. At the same time, the amplitude of calcium oscillations also decreased in the presence of the agonist. WIN 55,212-2 at a concentration of 2 μM suppressed NH4Cl-induced [Ca2+]i oscillations in all neurons but caused a transient biphasic increase in the basal [Ca2+]i level in 20% of astrocytes. Thus, in this work, using various models of hyperexcitation of neuronal networks, we have demonstrated a potential antiepileptic effect of the cannabinoid receptor agonist WIN 55,212-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Vossel K.A., Tartaglia M.C., Nygaard H.B., Zeman A.Z., Miller B.L. 2017. Epileptic activity in Alzheimer’s disease. Lancet Neurology. 16 (4), 311–322.

    Article  PubMed  Google Scholar 

  2. Chai Z., Ma C., Jin X. 2019. Homeostatic activity regulation as a mechanism underlying the effect of brain stimulation. Bioelectron Med. 5, 16.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Turovsky E.A., Turovskaya M.V., Gaidin S.G., Zinchenko V.P. 2017. Cytokine IL-10, activators of PI3-kinase, agonists of α-2 adrenoreceptor and antioxidants prevent ischemia-induced cell death in rat hippocampal cultures. Archives Biochem. Biophys. 615 (1), 35–43.

    Article  CAS  Google Scholar 

  4. Finnerup N.B., Attal N., Haroutounian S., McNicol E., Baron R., Dworkin R.H., Gilron I., Haanpää M., Hansson P., Jensen T.S., Kamerman P.R., Lund K., Moore A., Raja S.N., Rice A.S.C., Rowbotham M., Sena E., Siddall P., Smith B.H., Wallace M. 2015. Pharmacotherapy for neuropathic pain in adults. Lancet Neurology. 14 (2), 162–173.

    Article  CAS  PubMed  Google Scholar 

  5. Yoo J.Y., Panov F. 2019. Identification and treatment of drug-resistant epilepsy. Continuum (Minneap. Minn.). 25 (2), 362–380.

    PubMed  Google Scholar 

  6. Wu J. 2019. Cannabis, cannabinoid receptors, and endocannabinoid system. Acta Pharmacol. Sin. 40 (3), 297–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Montero-Oleas N., Arevalo-Rodriguez I., Nuñez-González S., Viteri-García A., Simancas-Racines D. 2020. Therapeutic use of cannabis and cannabinoids: An evidence mapping and appraisal of systematic reviews. BMC Complement. Med. Ther. 20 (1), 2456.

    Article  Google Scholar 

  8. Kow R.L., Jiang K., Naydenov A.V., Le J.H., Stella N., Nathanson N.M. 2014. Modulation of pilocarpine-induced seizures by cannabinoid receptor 1. PLoS One. 9 (4), e95922.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Marsicano G., Goodenough S., Monory K., Hermann H., Eder M., Cannich A., Azad S.C., Cascio M.G., Gutiérrez S.O., van der Stelt M., López-Rodriguez M.L., Casanova E., Schütz G., Zieglgänsberger W., Di Marzo V., Behl C., Lutz B. 2003. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science. 302 (5642), 84–88.

    Article  CAS  PubMed  Google Scholar 

  10. Zou S., Kumar U. 2018. Cannabinoid receptors and the endocannabinoid system: Signaling and function in the central nervous system. Int. J. Mol. Sci. 19 (3), 833.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sagredo O., González S., Aroyo I., Pazos M.R., Benito C., Lastres-Becker I., Romero J.P., Tolón R.M., Mechoulam R., Brouillet E., Romero J., Fernández-Ruiz J. 2009. Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity. Glia. 57 (11), 1154–1167.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen D.-J., Gao M., Gao F.-F., Su Q.-X., Wu J. 2017. Brain cannabinoid receptor 2. Acta Pharmacol. Sin. 38 (3), 312–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stempel A.V., Stumpf A., Zhang H.-Y., Özdoğan T., Pannasch U., Theis A.-K., Otte D.-M., Wojtalla A., Rácz I., Ponomarenko A., Xi Z.-X., Zimmer A., Schmitz D. 2016. Cannabinoid type 2 receptors mediate a cell type-specific plasticity in the hippocampus. Neuron. 90 (4), 795–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stumpf A., Parthier D., Sammons R.P., Stempel A.V., Breustedt J., Rost B.R., Schmitz D. 2018. Cannabinoid type 2 receptors mediate a cell type-specific self-inhibition in cortical neurons. Neuropharmacology. 139, 217–225.

    Article  CAS  PubMed  Google Scholar 

  15. Ma Z., Gao F., Larsen B., Gao M., Luo Z., Chen D., Ma X., Qiu S., Zhou Y., Xie J., Xi Z.-X., Wu J. 2019. Mechanisms of cannabinoid CB2 receptor-mediated reduction of dopamine neuronal excitability in mouse ventral tegmental area. EBioMedicine. 42, 225–237.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mason R., Cheer J.F. 2009. Cannabinoid receptor activation reverses kainate-induced synchronized population burst firing in rat hippocampus. Front. Integr. Neurosci. 3, 13.

    PubMed  PubMed Central  Google Scholar 

  17. Milano W., Capasso A. 2018. Neuroprotection by cannabinoids in neurodegenerative diseases. Alzheimers Dement. Cogn. Neurol. 2 (1), 1–7.

    Article  Google Scholar 

  18. Casillas-Espinosa P.M., Ali I., O’Brien T.J. 2020. Neurodegenerative pathways as targets for acquired epilepsy therapy development. Epilepsia Open. 5 (2), 138–154.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kendall D.A., Yudowski G.A. 2017. Cannabinoid receptors in the central nervous system. Front. Cell. Neurosci. 10, 9790.

    Article  Google Scholar 

  20. Mitchell V.A., Jeong H.-J., Drew G.M., Vaughan C.W. 2011. Cholecystokinin exerts an effect via the endocannabinoid system to inhibit GABAergic transmission in midbrain periaqueductal gray. Neuropsychopharmacology. 36 (9), 1801–1810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sánchez-Blázquez P., Rodríguez-Muñoz M., Garzón J. 2014. The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction. Front. Pharmacol. 4, 169.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Navarrete M., Araque A. 2008. Endocannabinoids mediate neuron-astrocyte communication. Neuron. 57 (6), 883–893.

    Article  CAS  PubMed  Google Scholar 

  23. Bazargani N., Attwell D. 2016. Astrocyte calcium signaling. Nat. Neurosci. 19 (2), 182–189.

    Article  CAS  PubMed  Google Scholar 

  24. Navarrete M., Araque A. 2010. Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron. 68 (1), 113–126.

    Article  CAS  PubMed  Google Scholar 

  25. Hryhorowicz S., Kaczmarek-Ryś M., Andrzejewska A., Staszak K., Hryhorowicz M., Korcz A., Słomski R. 2019. Allosteric modulation of cannabinoid receptor 1—Current challenges and future opportunities. Int. J. Mol. Sci. 20 (23), 5874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bosoi C.R., Rose C.F. 2009. Identifying the direct effects of ammonia on the brain. Metab. Brain Dis. 24 (1), 95–102.

    Article  CAS  PubMed  Google Scholar 

  27. Dahlberg D., Ivanovic J., Hassel B. 2016. Toxic levels of ammonia in human brain abscess. J. Neurosurg. 124 (3), 854–860.

    Article  CAS  PubMed  Google Scholar 

  28. Dynnik V.V., Kononov A.V., Sergeev A.I., Teplov I.Y., Tankanag A.V., Zinchenko V.P., Abulseoud O.A. 2015. To break or to brake neuronal network accelerated by ammonium ions? PLoS ONE. 10 (7), e0134145.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gaidin S.G., Zinchenko V.P., Kosenkov A.M. 2020. Mechanisms of ammonium-induced neurotoxicity. Neuroprotective effect of alpha-2 adrenergic agonists. Archives Biochem. Biophys. 693, 108593.

    Article  Google Scholar 

  30. Gaidin S.G., Zinchenko V.P., Sergeev A.I., Teplov I.Y., Mal’tseva V.N., Kosenkov A.M. 2020. Activation of alpha-2 adrenergic receptors stimulates GABA release by astrocytes. Glia. 68 (6), 1114–1130.

    Article  PubMed  Google Scholar 

  31. Zhu X., Birnbaumer L. 1996. G protein subunits and the stimulation of phospholipase C by Gs-and Gi-coupled receptors. Proc. Natl. Acad. Sci. USA. 93 (7), 2827–2831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Madukwe J.C., Garland-Kuntz E.E., Lyon A.M., S-mrcka A.V. 2018. G protein βγ subunits directly interact with and activate phospholipase Cϵ. J. Biol. Chem. 293 (17), 6387–6397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Enkvist M.O., Hämäläinen H., Jansson C.C., Kukkonen J.P., Hautala R., Courtney M.J., Akerman K.E. 1996. Coupling of astroglial alpha 2-adrenoreceptors to second messenger pathways. J. Neurochem. 66 (6), 2394–2401.

    Article  CAS  PubMed  Google Scholar 

  34. Ott P., Vilstrup H. 2014. Cerebral effects of ammonia in liver disease. Metab. Brain Dis. 29 (4), 901–911.

    Article  CAS  PubMed  Google Scholar 

  35. Huang Y., Thathiah A. 2015. Regulation of neuronal communication by G protein-coupled receptors. FEBS Lett. 589 (14), 1607–1619.

    Article  CAS  PubMed  Google Scholar 

  36. Wang T., Zhou G., He M., Xu Y., Rusyniak W.G., Xu Y., Ji Y., Simon R.P., Xiong Z.-G., Zha X.-M. 2020. GPR68 is a neuroprotective proton receptor in brain ischemia. Stroke. 51 (12), 3690–3700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Poskanzer K.E., Yuste R. 2016. Astrocytes regulate cortical state switching in vivo. Proc. Natl. Acad. Sci. USA. 113 (19), E2675-84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bindocci E., Savtchouk I., Liaudet N., Becker D., Carriero G., Volterra A. 2017. Three-dimensional Ca2+ imaging advances understanding of astrocyte biology. Science. 356 (6339), eaai8185.

  39. Hablitz L.M., Gunesch A.N., Cravetchi O., Moldavan M., Allen C.N. 2020. Cannabinoid signaling recruits astrocytes to modulate presynaptic function in the suprachiasmatic nucleus. eNeuro. 7 (1), ENEURO.0081-19.2020.

  40. Abo Youssef N., Schneider M.P., Mordasini L., Ineichen B.V., Bachmann L.M., Chartier-Kastler E., Panicker J.N., Kessler T.M. 2017. Cannabinoids for treating neurogenic lower urinary tract dysfunction in patients with multiple sclerosis. B.J.U. Int. 119 (4), 515–521.

    Article  Google Scholar 

  41. Abood M.E., Rizvi G., Sallapudi N., McAllister S.D. 2001. Activation of the CB1 cannabinoid receptor protects cultured mouse spinal neurons against excitotoxicity. Neurosci. Lett. 309 (3), 197–201.

    Article  CAS  PubMed  Google Scholar 

  42. Twitchell W., Brown S., Mackie K. 1997. Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J. Neurophysiol. 78 (1), 43–50.

    Article  CAS  PubMed  Google Scholar 

  43. Ohno-Shosaku T., Kano M. 2014. Endocannabinoid-mediated retrograde modulation of synaptic transmission. Current Opinion Neurobiol. 29, 1–8.

    Article  CAS  Google Scholar 

  44. Monory K., Polack M., Remus A., Lutz B., Korte M. 2015. Cannabinoid CB1 receptor calibrates excitatory synaptic balance in the mouse hippocampus. J. Neurosci. 35 (9), 3842–3850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cohen I., Navarro V., Clemenceau S., Baulac M., Miles R. 2002. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science. 298 (5597), 1418–1421.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state assignment of ICB RAS, no. 122041300005-4 “Functioning of receptors, ion channels and intracellular signaling systems, mechanisms of intercellular communications in different cell types in health and disease. Potential targets for pharmacotherapy. "

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Zinchenko.

Ethics declarations

The authors declare that they have no conflict of interest.

All experiments in this study were carried out in accordance with Directive 2010/63/EU of the European Parliament and of the Council of the European Union of 22 September 2010 on the protection of animals used for scientific purposes.

Additional information

Translated by S. Gaidin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiorov, S.A., Kairat, B.K., Gaidin, S.G. et al. Activation of the Cannabinoid Receptors Suppresses Hyperexcitation of Rat Hippocampal Neuronal Networks In Vitro. Biochem. Moscow Suppl. Ser. A 17, 169–175 (2023). https://doi.org/10.1134/S1990747823030078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747823030078

Keywords:

Navigation