Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Recent Advances in Synthesis and Applications of Organic Ionic Saltsbased Sensor Arrays

Author(s): Pawanpreet Kaur, Anupama Parmar and Harish Kumar Chopra*

Volume 21, Issue 6, 2024

Published on: 20 July, 2023

Page: [655 - 670] Pages: 16

DOI: 10.2174/1570193X20666230614141728

Price: $65

Abstract

Sensor arrays contain a group of sensors, improve observations with new dimensions, provide better estimations, and additional parameters in comparison to the individual selective sensor. The array-based sensing technique provides good performance to respond to various gaseous or liquid analytes. Room temperature ionic liquids (RTILs) (melting point <25°C) and Group of uniform materials based on organic salts (GUMBOS) (melting point =25-250°C) are organic ionic salts, composed of an oppositely charged pair of bulky organic cations and bulky organic/inorganic anion and shows interesting tunable physicochemical properties. In this review article, we will discuss the sensing performance of ILs- and GUMBOS-based sensor arrays. ILs-based sensor arrays have been used in electrochemical gas sensing, solvent discrimination, colorimetric gas sensing, sensing of organic compounds, optoelectronic sensing of vapors and solutions, and vapour sensing through IL/QCM systems. GUMBOS-based sensor arrays have been employed in vapour sensing through the GUMBOS/QCM method, detection, and discrimination of proteins.

Keywords: Sensor array, ionic liquids, GUMBOS, organic vapors, discrimination, additional parameters.

Graphical Abstract
[1]
Kaur, P.; Chopra, H.K. Exploring the potential of supported ionic liquids as building block systems in catalysis. ChemistrySelect, 2020, 5(39), 12057-12086.
[http://dx.doi.org/10.1002/slct.202002826]
[2]
Kaur, P.; Chopra, H.K. Recent progress in synthesis and applications of tunable materials and nanomaterials based on organic salts. ChemistrySelect, 2020, 5(42), 13033-13053.
[http://dx.doi.org/10.1002/slct.202002727]
[3]
Kaur, P.; Kumar, C.H. SBA-15 supported benzimidazolium-based ionic liquids: Synthesis, characterization, and applications in the fuel desulfurization. Fuel, 2022, 328, 125261.
[http://dx.doi.org/10.1016/j.fuel.2022.125261]
[4]
Kaur, P.; Chopra, H.K. Recent advances in applications of supported ionic liquids. Curr. Org. Chem., 2020, 23(26), 2881-2915.
[http://dx.doi.org/10.2174/1385272823666191204151803]
[5]
Kaur, P.; Kumar, C.H. MCM-41 supported S-alkyl/aryl-substituted 2-mercaptobenzothiazolium-based ionic liquids: Synthesis, characterization, and application in the fuel desulfurization. Fuel, 2023, 332, 126009.
[http://dx.doi.org/10.1016/j.fuel.2022.126009]
[6]
Kaur, P.; Chopra, H.K. SBA-15 supported benzoxazolium-based ionic liquids: Synthesis, characterization, and application in the adsorptive desulfurization. Fuel Process. Technol., 2022, 238, 107480.
[http://dx.doi.org/10.1016/j.fuproc.2022.107480]
[7]
Chopra, H.K.; Kaur, P. Recent advances in supported ionic liquid membrane technology in gas/organic compounds separations. Curr. Org. Chem., 2022, 26(12), 1149-1184.
[http://dx.doi.org/10.2174/1385272826666220901145540]
[8]
Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[9]
Pang, L.; Yang, P.; Pang, R.; Li, S. Bis(trifluoromethylsulfonyl)imide-based frozen ionic liquid for the hollow-fiber solidphase microex-traction of dichlorodiphenyltrichloroethane and its main metabolites. J. Sep. Sci., 2017, 40(16), 3311-3317.
[http://dx.doi.org/10.1002/jssc.201700429] [PMID: 28618176]
[10]
Jordan, A.N.; Das, S.; Siraj, N.; de Rooy, S.L.; Li, M.; El-Zahab, B.; Chandler, L.; Baker, G.A.; Warner, I.M. Anion-controlled morphologies and spectral features of cyanine-based nanoGUMBOS – an improved photosensitizer. Nanoscale, 2012, 4(16), 5031-5038.
[http://dx.doi.org/10.1039/c2nr30432e] [PMID: 22766774]
[11]
Siraj, N.; Hasan, F.; Das, S.; Kiruri, L.W.; Steege Gall, K.E.; Baker, G.A.; Warner, I.M. Carbazole-derived group of uniform materials based on organic salts: Solid state fluorescent analogues of ionic liquids for potential applications in organic-based blue light-emitting diodes. J. Phys. Chem. C, 2014, 118(5), 2312-2320.
[http://dx.doi.org/10.1021/jp410784v]
[12]
Warner, I.M.; El-Zahab, B.; Siraj, N. Perspectives on moving ionic liquid chemistry into the solid phase. Anal. Chem., 2014, 86(15), 7184-7191.
[http://dx.doi.org/10.1021/ac501529m] [PMID: 25017178]
[13]
Azevedo, A.M.O.; Santos, J.L.M.; Warner, I.M.; Saraiva, M.L.M.F.S. GUMBOS and nanoGUMBOS in chemical and biological analysis: A review. Anal. Chim. Acta, 2020, 1133, 180-198.
[http://dx.doi.org/10.1016/j.aca.2020.06.028] [PMID: 32993869]
[14]
Ghandi, K. A review of ionic liquids, their limits and applications. Green Sustain. Chem., 2014, 4(1), 44-53.
[15]
Keskin, S.; Kayrak-Talay, D.; Akman, U.; Hortaçsu, Ö. A review of ionic liquids towards supercritical fluid applications. J. Supercrit. Fluids, 2007, 43(1), 150-180.
[http://dx.doi.org/10.1016/j.supflu.2007.05.013]
[16]
Seki, S.; Kobayashi, T.; Kobayashi, Y.; Takei, K.; Miyashiro, H.; Hayamizu, K.; Tsuzuki, S.; Mitsugi, T.; Umebayashi, Y. Effects of cation and anion on physical properties of room-temperature ionic liquids. J. Mol. Liq., 2010, 152(1-3), 9-13.
[http://dx.doi.org/10.1016/j.molliq.2009.10.008]
[17]
Bagno, A.; Butts, C.; Chiappe, C.; D’Amico, F.; Lord, J.C.D.; Pieraccini, D.; Rastrelli, F. The effect of the anion on the physical properties of trihalide-based N,N-dialkylimidazolium ionic liquids. Org. Biomol. Chem., 2005, 3(9), 1624-1630.
[http://dx.doi.org/10.1039/b502654g] [PMID: 15858642]
[18]
Lu, C.; Das, S.; Magut, P.K.S.; Li, M.; El-Zahab, B.; Warner, I.M. Irradiation induced fluorescence enhancement in PEGylated cyanine-based NIR nano- and mesoscale GUMBOS. Langmuir, 2012, 28(40), 14415-14423.
[http://dx.doi.org/10.1021/la302428a] [PMID: 22957476]
[19]
Sarkar, A.; Kanakamedala, K.; Jagadish, N.N.; Jordan, A.; Das, S.; Siraj, N.; Warner, I.M.; Daniels-Race, T. Electro-optical characterization of cyanine-based GUMBOS and nanoGUMBOS. Electron. Mater. Lett., 2014, 10(5), 879-885.
[http://dx.doi.org/10.1007/s13391-014-3347-8]
[20]
Pérez, R.L.; Ayala, C.E.; Warner, I.M. Group of Uniform Materials Based on Organic Salts (GUMBOS): A Review of Their Solid State Properties and Applications. In: Ionic Liquids - Thermophysical Properties and Applications; Intechopen; , 2021.
[21]
Liang, C.; Yuan, C.Y.; Warmack, R.J.; Barnes, C.E.; Dai, S. Ionic liquids: A new class of sensing materials for detection of organic vapors based on the use of a quartz crystal microbalance. Anal. Chem., 2002, 74(9), 2172-2176.
[http://dx.doi.org/10.1021/ac011007h] [PMID: 12033323]
[22]
Rehman, A.; Zeng, X. Methods and approaches of utilizing ionic liquids as gas sensing materials. RSC Advances, 2015, 5(72), 58371-58392.
[http://dx.doi.org/10.1039/C5RA06754E] [PMID: 29142738]
[23]
Regmi, B.P.; Monk, J.; El-Zahab, B.; Das, S.; Hung, F.R.; Hayes, D.J.; Warner, I.M. A novel composite film for detection and molecular weight determination of organic vapors. J. Mater. Chem., 2012, 22(27), 13732-13741.
[http://dx.doi.org/10.1039/c2jm31623d]
[24]
González, L.; Altava, B.; Bolte, M.; Burguete, M.I.; García-Verdugo, E.; Luis, S.V. Synthesis of chiral room temperature ionic liquids from amino acids–application in chiral molecular recognition. Eur. J. Org. Chem., 2012, 2012(26), 4996-5009.
[http://dx.doi.org/10.1002/ejoc.201200607]
[25]
Zeng, X.; Wang, Z.; Rehman, A. Electrode–electrolyte interfacial processes in ionic liquids and sensor applications. In: Electrochemistry in Ionic Liquids; Springer: Cham, 2015, pp. 7-74.
[http://dx.doi.org/10.1007/978-3-319-13485-7_2]
[26]
Mu, X.; Wang, Z.; Zeng, X.; Mason, A.J. A robust flexible electrochemical gas sensor using room temperature ionic liquid. IEEE Sens. J., 2013, 13(10), 3976-3981.
[http://dx.doi.org/10.1109/JSEN.2013.2262932]
[27]
Yu, L.; Garcia, D.; Ren, R.; Zeng, X. Ionic liquid high temperature gas sensors. Chem. Commun., 2005, (17), 2277-2279.
[http://dx.doi.org/10.1039/b501224d] [PMID: 15856121]
[28]
Silvester, D.S. Recent advances in the use of ionic liquids for electrochemical sensing. Analyst, 2011, 136(23), 4871-4882.
[http://dx.doi.org/10.1039/c1an15699c] [PMID: 22013585]
[29]
Regmi, B.P.; Galpothdeniya, W.I.S.; Siraj, N.; Webb, M.H.; Speller, N.C.; Warner, I.M. Phthalocyanine- and porphyrin-based GUMBOS for rapid and sensitive detection of organic vapors. Sens. Actuators B Chem., 2015, 209, 172-179.
[http://dx.doi.org/10.1016/j.snb.2014.11.068]
[30]
Grate, J.W. Acoustic wave microsensor arrays for vapor sensing. Chem. Rev., 2000, 100(7), 2627-2648.
[http://dx.doi.org/10.1021/cr980094j] [PMID: 11749298]
[31]
Cseri, L.; Razali, M.; Pogany, P.; Szekely, G. Organic solvents in sustainable synthesis and engineering. In: Green Chemistry; Elsevier, 2018; pp. 513-553.
[http://dx.doi.org/10.1016/B978-0-12-809270-5.00020-0]
[32]
Lau, P.K.W.; Koenig, A. Management, disposal and recycling of waste industrial organic solvents in Hong Kong. Chemosphere, 2001, 44(1), 9-15.
[http://dx.doi.org/10.1016/S0045-6535(00)00378-7] [PMID: 11419763]
[33]
Seedorff, L.; Olsen, E. Exposure to organic solvents-I. A survey on the use of solvents. Ann. Occup. Hyg., 1990, 34(4), 371-378.
[PMID: 2240991]
[34]
Peplonska, B.; Stewart, P.; Szeszenia-Dąbrowska, N.; Lissowska, J.; Brinton, L.A.; Gromiec, J.P.; Brzeznicki, S.; Yang, X.R.; Sherman, M.; García-Closas, M.; Blair, A. Occupational exposure to organic solvents and breast cancer in women. Occup. Environ. Med., 2010, 67(11), 722-729.
[http://dx.doi.org/10.1136/oem.2009.046557] [PMID: 19819862]
[35]
Rankin, J.M.; Zhang, Q.; LaGasse, M.K.; Zhang, Y.; Askim, J.R.; Suslick, K.S. Solvatochromic sensor array for the identification of common organic solvents. Analyst, 2015, 140(8), 2613-2617.
[http://dx.doi.org/10.1039/C4AN02253J] [PMID: 25705864]
[36]
Benedetti, E.; Kocsis, L.S.; Brummond, K.M. Synthesis and photophysical properties of a series of cyclopenta[b]naphthalene solvatochromic fluorophores. J. Am. Chem. Soc., 2012, 134(30), 12418-12421.
[http://dx.doi.org/10.1021/ja3055029] [PMID: 22793873]
[37]
Giordano, L.; Shvadchak, V.V.; Fauerbach, J.A.; Jares-Erijman, E.A.; Jovin, T.M. Highly solvatochromic 7-aryl-3-hydroxychromones. J. Phys. Chem. Lett., 2012, 3(8), 1011-1016.
[http://dx.doi.org/10.1021/jz3002019] [PMID: 26286565]
[38]
Tso-Lun Lo, L.; Lai, S.W.; Yiu, S.M.; Ko, C.C. A new class of highly solvatochromic dicyano rhenate(i) diimine complexes – synthesis, photophysics and photocatalysis. Chem. Commun., 2013, 49(23), 2311-2313.
[http://dx.doi.org/10.1039/c3cc39189b] [PMID: 23396368]
[39]
Selvakumar, P.M.; Nadella, S.; Fröhlich, R.; Albrecht, M.; Subramanian, P.S. A new class of solvatochromic material: Geometrically un-saturated Ni (II) complexes. Dyes Pigments, 2012, 95(3), 563-571.
[http://dx.doi.org/10.1016/j.dyepig.2012.05.008]
[40]
Zhang, C.; Suslick, K.S. A colorimetric sensor array for organics in water. J. Am. Chem. Soc., 2005, 127(33), 11548-11549.
[http://dx.doi.org/10.1021/ja052606z] [PMID: 16104700]
[41]
Gardner, J.W.; Yinon, J. Electronic noses & sensors for the detection of explosives; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004, pp. 1-28.
[http://dx.doi.org/10.1007/1-4020-2319-7]
[42]
Fahimi-Kashani, N.; Hormozi-Nezhad, M.R. Gold nanorod-based chrono-colorimetric sensor arrays: A promising platform for chemical discrimination applications. ACS Omega, 2018, 3(2), 1386-1394.
[http://dx.doi.org/10.1021/acsomega.7b01780] [PMID: 31458467]
[43]
Basabe-Desmonts, L.; Reinhoudt, D.N.; Crego-Calama, M. Design of fluorescent materials for chemical sensing. Chem. Soc. Rev., 2007, 36(6), 993-1017.
[http://dx.doi.org/10.1039/b609548h] [PMID: 17534482]
[44]
Galpothdeniya, W.I.S.; Regmi, B.P.; McCarter, K.S.; de Rooy, S.L.; Siraj, N.; Warner, I.M. Virtual colorimetric sensor array: Single ionic liquid for solvent discrimination. Anal. Chem., 2015, 87(8), 4464-4471.
[http://dx.doi.org/10.1021/acs.analchem.5b00714] [PMID: 25822878]
[45]
Albert, K.J.; Lewis, N.S.; Schauer, C.L.; Sotzing, G.A.; Stitzel, S.E.; Vaid, T.P.; Walt, D.R. Cross-reactive chemical sensor arrays. Chem. Rev., 2000, 100(7), 2595-2626.
[http://dx.doi.org/10.1021/cr980102w] [PMID: 11749297]
[46]
Rochat, S.Ã.; Gao, J.; Qian, X.; Zaubitzer, F.; Severin, K. Cross-reactive sensor arrays for the detection of peptides in aqueous solution by fluorescence spectroscopy. Chemistry, 2010, 16(1), 104-113.
[http://dx.doi.org/10.1002/chem.200902202] [PMID: 19938007]
[47]
Wong, S.F.; Khor, S.M. State-of-the-art of differential sensing techniques in analytical sciences. TrAC. Trends Anal. Chem., 2019, 114, 108-125.
[48]
Röck, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev., 2008, 108(2), 705-725.
[http://dx.doi.org/10.1021/cr068121q] [PMID: 18205411]
[49]
Dickinson, T.A.; White, J.; Kauer, J.S.; Walt, D.R. A chemical-detecting system based on a cross-reactive optical sensor array. Nature, 1996, 382(6593), 697-700.
[http://dx.doi.org/10.1038/382697a0] [PMID: 8751439]
[50]
McCleskey, S.C.; Griffin, M.J.; Schneider, S.E.; McDevitt, J.T.; Anslyn, E.V. Differential receptors create patterns diagnostic for ATP and GTP. J. Am. Chem. Soc., 2003, 125(5), 1114-1115.
[http://dx.doi.org/10.1021/ja021230b] [PMID: 12553782]
[51]
Greene, N.T.; Shimizu, K.D. Colorimetric molecularly imprinted polymer sensor array using dye displacement. J. Am. Chem. Soc., 2005, 127(15), 5695-5700.
[http://dx.doi.org/10.1021/ja0468022] [PMID: 15826210]
[52]
Umali, A.P.; Anslyn, E.V. A general approach to differential sensing using synthetic molecular receptors. Curr. Opin. Chem. Biol., 2010, 14(6), 685-692.
[http://dx.doi.org/10.1016/j.cbpa.2010.07.022] [PMID: 20801075]
[53]
Palacios, M.A.; Wang, Z.; Montes, V.A.; Zyryanov, G.V.; Anzenbacher, P., Jr Rational design of a minimal size sensor array for metal ion detection. J. Am. Chem. Soc., 2008, 130(31), 10307-10314.
[http://dx.doi.org/10.1021/ja802377k] [PMID: 18616249]
[54]
Zyryanov, G.V.; Palacios, M.A.; Anzenbacher, P., Jr Rational design of a fluorescence-turn-on sensor array for phosphates in blood serum. Angew. Chem. Int. Ed., 2007, 46(41), 7849-7852.
[http://dx.doi.org/10.1002/anie.200702611] [PMID: 17696180]
[55]
Hewage, H.S.; Anslyn, E.V. Pattern-based recognition of thiols and metals using a single squaraine indicator. J. Am. Chem. Soc., 2009, 131(36), 13099-13106.
[http://dx.doi.org/10.1021/ja904045n] [PMID: 19691345]
[56]
Garçon, L.A.; Genua, M.; Hou, Y.; Buhot, A.; Calemczuk, R.; Livache, T.; Billon, M.; Le Narvor, C.; Bonnaffé, D.; Lortat-Jacob, H.; Hou, Y. A versatile electronic tongue based on surface plasmon resonance imaging and cross-reactive sensor arrays—A mini-review. Sensors, 2017, 17(5), 1046.
[http://dx.doi.org/10.3390/s17051046] [PMID: 28481254]
[57]
Srinivasan, N.; Kilburn, J.D. Combinatorial approaches to synthetic receptors. Curr. Opin. Chem. Biol., 2004, 8(3), 305-310.
[http://dx.doi.org/10.1016/j.cbpa.2004.04.014] [PMID: 15183329]
[58]
Vatteroni, M.; Cavallotti, C.; Silvestri, M.; Tran, H.T.; Cuppone, M.; Menciassi, A. CMOS image sensor with tunable dynamic range for catheter based endoluminal applications. Sens. Actuators A Phys., 2015, 227, 63-69.
[http://dx.doi.org/10.1016/j.sna.2015.03.020]
[59]
Tsuda, T.; Iwasaki, K.; Kumagai, K.; Kuwabata, S. Epoxy-containing ionic liquids with tunable functionality. Molecules, 2019, 24(14), 2591.
[http://dx.doi.org/10.3390/molecules24142591] [PMID: 31319460]
[60]
Seo, S.; Quiroz-Guzman, M.; DeSilva, M.A.; Lee, T.B.; Huang, Y.; Goodrich, B.F.; Schneider, W.F.; Brennecke, J.F. Chemically tunable ionic liquids with aprotic heterocyclic anion (AHA) for CO(2) capture. J. Phys. Chem. B, 2014, 118(21), 5740-5751.
[http://dx.doi.org/10.1021/jp502279w] [PMID: 24811264]
[61]
Xiao, C.; Rehman, A.; Zeng, X. Dynamics of redox processes in ionic liquids and their interplay for discriminative electrochemical sensing. Anal. Chem., 2012, 84(3), 1416-1424.
[http://dx.doi.org/10.1021/ac2024798] [PMID: 22224654]
[62]
Zhu, W.; Li, W.; Yang, H.; Jiang, Y.; Wang, C.; Chen, Y.; Li, G. A rapid and efficient way to dynamic creation of cross-reactive sensor arrays based on ionic liquids. Chemistry, 2013, 19(35), 11603-11612.
[http://dx.doi.org/10.1002/chem.201300789] [PMID: 23873515]
[63]
Koel, M. Ionic liquids in chemical analysis. Crit. Rev. Anal. Chem., 2005, 35(3), 177-192.
[http://dx.doi.org/10.1080/10408340500304016]
[64]
Hou, K.Y.; Rehman, A.; Zeng, X. Study of ionic liquid immobilization on polyvinyl ferrocene substrates for gas sensor arrays. Langmuir, 2011, 27(8), 5136-5146.
[http://dx.doi.org/10.1021/la104191n] [PMID: 21410206]
[65]
Chen, K.; Shu, Q.; Schmittel, M. Design strategies for lab-on-a-molecule probes and orthogonal sensing. Chem. Soc. Rev., 2015, 44(1), 136-160.
[http://dx.doi.org/10.1039/C4CS00263F] [PMID: 25354588]
[66]
Wu, P.; Miao, L.N.; Wang, H.F.; Shao, X.G.; Yan, X.P. A multidimensional sensing device for the discrimination of proteins based on manganese-doped ZnS quantum dots. Angew. Chem. Int. Ed., 2011, 50(35), 8118-8121.
[http://dx.doi.org/10.1002/anie.201101882] [PMID: 21618375]
[67]
Zhang, W.; Gao, N.; Cui, J.; Wang, C.; Wang, S.; Zhang, G.; Dong, X.; Zhang, D.; Li, G. AIE-doped poly(ionic liquid) photonic spheres: A single sphere-based customizable sensing platform for the discrimination of multi-analytes. Chem. Sci., 2017, 8(9), 6281-6289.
[http://dx.doi.org/10.1039/C7SC02409F] [PMID: 28989662]
[68]
Zhang, P.; Ma, L.; Li, H. Design of wireless mine gas monitoring and control system based on nRF2401. 2012International Conference on Computer Science and Service System, 11-13 August 2012Nanjing, China2012, pp. 1051-1054.
[http://dx.doi.org/10.1109/CSSS.2012.266]
[69]
Tsow, F.; Forzani, E.; Rai, A.; Wang, R.; Tsui, R.; Mastroianni, S.; Knobbe, C.; Gandolfi, A.J.; Tao, N.J. A wearable and wireless sensor system for real-time monitoring of toxic environmental volatile organic compounds. IEEE Sens. J., 2009, 9(12), 1734-1740.
[http://dx.doi.org/10.1109/JSEN.2009.2030747]
[70]
Ng, K.T.; Boussaid, F.; Bermak, A. A CMOS single-chip gas recognition circuit for metal oxide gas sensor arrays. IEEE Trans. Circuits Syst. I Regul. Pap., 2011, 58(7), 1569-1580.
[http://dx.doi.org/10.1109/TCSI.2011.2143090]
[71]
Niu, X.; Huang, X.; Zhao, Z.; Zhang, Y.; Huang, C.; Cui, L. The design and evaluation of a wireless sensor network for mine safety monitoring. EEE GLOBECOM 2007 - IEEE Global Telecommunications Conference, 26-30 November 2007 Washington, DC USA,, 2007.
[http://dx.doi.org/10.1109/GLOCOM.2007.248]
[72]
Gillanders, R.N.; Samuel, I.D.W.; Turnbull, G.A. A low-cost, portable optical explosive-vapour sensor. Sens. Actuators B Chem., 2017, 245, 334-340.
[http://dx.doi.org/10.1016/j.snb.2017.01.178]
[73]
Li, H.; Mu, X.; Wang, Z.; Guo, M.; Zeng, X.; Mason, A.J. Room temperature ionic-liquid electrochemical gas sensor array system for real-time mine safety monitoring. In:SENSORS, 2013 IEEE; IEEE, 2013, pp. 1-4.
[http://dx.doi.org/10.1109/ICSENS.2013.6688143]
[74]
Hu, C.; Bai, X.; Wang, Y.; Jin, W.; Zhang, X.; Hu, S. Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes. Anal. Chem., 2012, 84(8), 3745-3750.
[http://dx.doi.org/10.1021/ac3003243] [PMID: 22424097]
[75]
Park, C.H.; Schroeder, V.; Kim, B.J.; Swager, T.M. Ionic liquid-carbon nanotube sensor arrays for human breath related volatile organic compounds. ACS Sens., 2018, 3(11), 2432-2437.
[http://dx.doi.org/10.1021/acssensors.8b00987] [PMID: 30379539]
[76]
Baldwin, E.A.; Bai, J.; Plotto, A.; Dea, S. Electronic noses and tongues: Applications for the food and pharmaceutical industries. Sensors., 2011, 11(5), 4744-4766.
[http://dx.doi.org/10.3390/s110504744] [PMID: 22163873]
[77]
Galpothdeniya, W.I.S.; McCarter, K.S.; De Rooy, S.L.; Regmi, B.P.; Das, S.; Hasan, F.; Tagge, A.; Warner, I.M. Ionic liquid-based optoe-lectronic sensor arrays for chemical detection. RSC Advances, 2014, 4(14), 7225-7234.
[http://dx.doi.org/10.1039/C3RA47518B]
[78]
Müller, G.; Hackner, A.; Beer, S.; Göbel, J. Solid-state gas sensors: Sensor system challenges in the civil security domain. Materials., 2016, 9(1), 65.
[http://dx.doi.org/10.3390/ma9010065] [PMID: 28787865]
[79]
Neri, G. Solid state gas sensors for clinical diagnosis.In: Biological and Medical Sensor Technologies; Iniewski, K., Ed.; CRC Press: Boca Raton, FL, USA, 2012, pp. 201-226.
[80]
Neri, G. First fifty years of chemoresistive gas sensors. Chemosensors., 2015, 3(1), 1-20.
[http://dx.doi.org/10.3390/chemosensors3010001]
[81]
Reimhult, K.; Yoshimatsu, K.; Risveden, K.; Chen, S.; Ye, L.; Krozer, A. Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles. Biosens. Bioelectron., 2008, 23(12), 1908-1914.
[http://dx.doi.org/10.1016/j.bios.2008.02.011] [PMID: 18374557]
[82]
Vilaseca, M.; Yagüe, C.; Coronas, J.; Santamaria, J. Development of QCM sensors modified by AlPO4-18 films. Sens. Actuators B Chem., 2006, 117(1), 143-150.
[http://dx.doi.org/10.1016/j.snb.2005.11.013]
[83]
Jin, X.; Yu, L.; Garcia, D.; Ren, R.X.; Zeng, X. Ionic liquid high-temperature gas sensor array. Anal. Chem., 2006, 78(19), 6980-6989.
[http://dx.doi.org/10.1021/ac0608669] [PMID: 17007524]
[84]
Rehman, A.; Hamilton, A.; Chung, A.; Baker, G.A.; Wang, Z.; Zeng, X. Differential solute gas response in ionic-liquid-based QCM arrays: Elucidating design factors responsible for discriminative explosive gas sensing. Anal. Chem., 2011, 83(20), 7823-7833.
[http://dx.doi.org/10.1021/ac201583c] [PMID: 21863884]
[85]
Vaughan, S.R.; Pérez, R.L.; Chhotaray, P.; Warner, I.M. Quartz crystal microbalance based sensor arrays for detection and discrimination of VOCs using phosphonium ionic liquid composites. Sensors., 2020, 20(3), 615.
[http://dx.doi.org/10.3390/s20030615] [PMID: 31979151]
[86]
Speller, N.C.; Siraj, N.; McCarter, K.S.; Vaughan, S.; Warner, I.M. QCM virtual sensor array: Vapor identification and molecular weight approximation. Sens. Actuators B Chem., 2017, 246, 952-960.
[http://dx.doi.org/10.1016/j.snb.2017.02.042]
[87]
Zairi, S.; Martelet, C.; Jaffrezic-Renault, N.; M’gaïeth, R.; Maâref, H.; Lamartine, R. Porous silicon a transducer material for a high-sensitive (bio)chemical sensor: Effect of a porosity, pores morphologies and a large surface area on a sensitivity. Thin Solid Films, 2001, 383(1-2), 325-327.
[http://dx.doi.org/10.1016/S0040-6090(00)01607-2]
[88]
Buriak, J.M. High surface area silicon materials: Fundamentals and new technology. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2006, 364(1838), 217-225.
[http://dx.doi.org/10.1098/rsta.2005.1681] [PMID: 18272462]
[89]
Anderson, R.C.; Muller, R.S.; Tobias, C.W. nvestigation of porous silicon for vapor sensing (No. UCRL-21267); Lawrence Livermore National Lab (LLNL): Livermore, CA (United States); Berkeley Sensor and Actuator Center, CA (USA),; , 1989.
[90]
Shang, Y.; Zhang, H.; Wang, X.; Wu, J. An optical olfactory sensor based on porous silicon infiltrated with room-temperature ionic liquid arrays. Chemistry, 2011, 17(48), 13400-13404.
[http://dx.doi.org/10.1002/chem.201101572] [PMID: 22038925]
[91]
Shvedene, N.V.; Rzhevskaia, A.V.; Aksenova, V.A.; Pletnev, I.V. A potentiometric multisensor system of anion-selective electrodes based on ionic liquids. Moscow Univ. Chem. Bull., 2017, 72(6), 307-314.
[http://dx.doi.org/10.3103/S0027131418010078]
[92]
Galpothdeniya, W.I.S.; Fronczek, F.R.; Cong, M.; Bhattarai, N.; Siraj, N.; Warner, I.M. Tunable GUMBOS-based sensor array for label-free detection and discrimination of proteins. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(8), 1414-1422.
[http://dx.doi.org/10.1039/C5TB02038G] [PMID: 32263108]
[93]
Pérez, R.L.; Cong, M.; Vaughan, S.R.; Ayala, C.E.; Galpothdeniya, W.I.S.; Mathaga, J.K.; Warner, I.M. Protein discrimination using a fluo-rescence-based sensor array of thiacarbocyanine-GUMBOS. ACS Sens., 2020, 5(8), 2422-2429.
[http://dx.doi.org/10.1021/acssensors.0c00484] [PMID: 32686397]
[94]
Vaughan, S.R.; Speller, N.C.; Chhotaray, P.; McCarter, K.S.; Siraj, N.; Pérez, R.L.; Li, Y.; Warner, I.M. Class specific discrimination of volatile organic compounds using a quartz crystal microbalance based multisensor array. Talanta, 2018, 188, 423-428.
[http://dx.doi.org/10.1016/j.talanta.2018.05.097] [PMID: 30029397]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy