Skip to main content
Log in

Electroconductive Materials Based on Polylactide and Polypyrrole for Biomedical Applications

  • MEDICAL POLYMERS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Electroconductive scaffolds of different shape for tissue engineering have been obtained on the basis of two biocompatible polymers: polylactide and polypyrrole. The composite scaffolds have been based on porous permeable films or tubes of polylactides prepared via electrospinning. A layer of electroconductive polypyrrole has been applied at the developed surface of the scaffolds consisting of the chaotically interwoven fibers of micron-scale thickness. The structure of the tissue engineering scaffolds as well as their mechanical, redox, and electroconductive properties have been investigated. It has been found that the scaffolds are stable during electrical stimulation via prolonged application of the cyclic potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. P. Gupta and V. Kumar, Eur. Polym. J. 43, 4053 (2007).

    Article  CAS  Google Scholar 

  2. K. M. Nampoothiri, N. R. Nair, and R. P. John, Bioresour. Technol. 101, 8493 (2010).

    Article  Google Scholar 

  3. T. Standau, C. Zhao, S. M. Castellón, C. Bonten, and V. Altstadt, Polymers 11, 306 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. R. Banerjee and S. S. Ray, Polym. Eng. Sci. 61, 617 (2021).

    Article  CAS  Google Scholar 

  5. S. Slomkowski, S. Penczek, and A. Duda, Polym. Adv. Technol. 25, 436 (2014).

    Article  CAS  Google Scholar 

  6. K. S. Anderson, K. M. Schreck, and M. A. Hillmyer, Polym. Rev. 48 (1), 85 (2008).

    Article  CAS  Google Scholar 

  7. S. Corneillie, and M. Smet, Polym. Chem. 6, 850 (2015).

    Article  CAS  Google Scholar 

  8. M. Musioł, W. Sikorska, G. Adamus, H. Janeczek, M. Kowalczuk, and J. Rydz, Eur. Food Res. Technol. 242, 815 (2016).

    Article  Google Scholar 

  9. H. Sawalha, K. Schroen, and R. Boom, Chem. Eng. J. 169, 1 (2011).

    Article  CAS  Google Scholar 

  10. E. H. Tümer and H. Y. Erbil, Coatings 11, 390 (2021).

    Article  Google Scholar 

  11. T. S. Demina, T. A. Akopova, and A. N. Zelenetsky, Polym. Sci., Ser. C 63 (2), 219 (2021).

    Article  CAS  Google Scholar 

  12. A. Kamalov, M. Shishov, N. Smirnova, V. Kodolova-Chukhontseva, I. Dobrovol’skaya, K. Kolbe, A. Didenko, E. Ivan’kova, V. Yudin, and P. Morganti, J. Funct. Biomater. 13, 89 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. V. V. Kodolova-Chukhontseva, M. A. Shishov, K. A. Kolbe, N. V. Smirnova, I. P. Dobrovol’skaya, E. N. Dresvyanina, S. G. Bystrov, N. S. Terebova, A. M. Kamalov, A. E. Bursian, E. M. Ivan’kova, and V. E. Yudin, Polymers 14, 3287 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Vandghanooni and M. Eskandani, Int. J. Biol. Macromol. 141, 636 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. K. A. Kolbe, M. A. Shishov, I. Yu. Sapurina, N. V. Smirnova, V. V. Kodolova-Chukhontseva, E. N. Dresvyanina, A. M. Kamalov, and V. E. Yudin, Zh. Tekh. Fiz. 91 (12), 2061 (2021).

    Google Scholar 

  16. E. Llorens, E. Armelin, M. del Mar Pérez-Madrigal, L. Javier del Valle, C. Alemán, and J. Puiggalí, Polymers 5, 1115 (2013).

    Article  Google Scholar 

  17. M. A. Shishov, I. Yu. Sapurina, N. V. Smirnova, and V. E. Yudin, Biointerface Res. Appl. Chem. 13 (1), 96 (2023).

    CAS  Google Scholar 

  18. X. Zhou, A. Yang, Z. Huang, G. Yin, X. Pu, and J. Jin, Colloids Surf., B 149 (1), 217 (2017).

    Article  CAS  Google Scholar 

  19. A. C. da Silva and S. I. Córdoba de Torresi, Front. Mater. 6, 98 (2019).

    Article  Google Scholar 

  20. I. Yu. Sapurina, V. V. Matrenichev, E. N. Vlasova, M. A. Shishov, E. M. Ivan’kova, I. P. Dobrovol’skaya, and V. E. Yudin, Polym. Sci., Ser. B 62 (2), 116 (2020).

    Article  CAS  Google Scholar 

  21. Toncheva, M. Spasova, D. Paneva, N. Manolova, and I. Rashkov, Int. J. Polym. Mater. Polym. Biomater. 63, 657 (2014).

    Article  CAS  Google Scholar 

  22. L. A. Can-Herrera, A. I. Oliva, M. A. Dzul-Cervantes, A. Pacheco-Salazar, and O. F. Cervantes-Uc, Polymers 13, 662 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. I. P. Dobrovol’skaya, N. A. Zavrazhnykh, P. V. Poprya-dukhin, I. A. Kasatkin, E. N. Popova, E. M. Ivan’kova, N. N. Saprykina, and V. E. Yudin, Polym. Sci., Ser. A 62 (4), 354 (2020).

    Article  Google Scholar 

  24. I. Sapurina, J. Stejskal, M. Spirkova, and J. Kotek, Synth. Met. 151 (2), 93 (2005).

    Article  CAS  Google Scholar 

  25. B. Hernández-Gascón, E. Peña, H. Melero, G. Pascual, M. Doblaré, M. P, Ginebra, J. M. Bellón, and B. Calvo, Acta Biomater. 7 (11), 3905 (2011).

    Article  PubMed  Google Scholar 

  26. H. Nekounam, S. Gholizadeh, Z. Allahyari, H. Samadian, N. Nazeri, M. A. Shokrgozare, and R. Faridi-Majidi, Mater. Res. Bull. 134, 111083 (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Sapurina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Karpushkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavrazhnykh, N.A., Sapurina, I.Y., Shishov, M.A. et al. Electroconductive Materials Based on Polylactide and Polypyrrole for Biomedical Applications. Polym. Sci. Ser. A 65, 264–273 (2023). https://doi.org/10.1134/S0965545X23700943

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X23700943

Navigation