Skip to main content
Log in

Tropical linear representations of the Chinese monoid

  • Research Article
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

We introduce a faithful tropical linear representation of the Chinese monoid, and thus prove that this monoid admits all the semigroup identities satisfied by upper triangular tropical matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The representations were found by an extensive search among triangular matrices of size \(2 \times 2\) with small entries, performed with ScicosLab, a fork from SciLab which includes a max-plus toolbox. The computations below, which finally show that \(\rho \) is a faithful representation, were performed with Mathematica.

References

  1. Adjan, S.I.: Defining relations and algorithmic problems for groups and semigroups. Proc. Steklov Inst. Math. 85, 1–152 (1966)

    MathSciNet  Google Scholar 

  2. Aird, T., Ribeiro, D.: Tropical representations and identities of the stylic monoid. Semigroup Forum 106(1), 1–23 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cain, A.J., Johnson, M., Kambites, M., Malheiro, A.: Representations and identities of plactic-like monoids. J. Algebra 606, 819–850 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cassaigne, J., Espie, M., Krob, D., Novelli, J.-C., Hivert, F.: The Chinese monoid. Internat. J. Algebra Comput. 11(3), 301–334 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. d’Alessandro, F., Pasku, E.: A combinatorial property for semigroups of matrices. Semigroup Forum 67(1), 22–30 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Daviaud, L., Johnson, M., Kambites, M.: Identities in upper triangular tropical matrix semigroups and the bicyclic monoid. J. Algebra 501, 503–525 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daviaud, L., Johnson, M.: The shortest identities for max-plus automata with two states. In: Larsen, K.G., Bodlaender, H.L., Raskin, J.-F. (eds.), 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 83, pp. 48:1-48:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

  8. Duchamp, G., Krob, D.: Plactic-growth-like monoids. In: Ito, M., Jürgensen, H. (eds.) Words, Languages and Combinatorics, II (Kyoto, 1992), pp. 124–142. World Scientific, River Edge, NJ (1994)

    Google Scholar 

  9. Fulton, W.: Young Tableaux: With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  10. Golubchik, I., Mikhalev, A.: A note on varieties of semiprime rings with semigroup identities. J. Algebra 54, 42–45 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Izhakian, Z.: Semigroup identities in the monoid of triangular tropical matrices. Semigroup Forum 88(1), 145–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Izhakian, Z.: Erratum to: Semigroup identities in the monoid of triangular tropical matrices. Semigroup Forum 92(3), 733 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Izhakian, Z.: Tropical plactic algebra, the cloaktic monoid, and semigroup representations. J. Algebra 524, 290–366 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Izhakian, Z.: Semigroup identities of tropical matrix semigroups of maximal rank. Semigroup Forum 92(3), 712–732 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Izhakian, Z., Margolis, S.: Semigroup identities in the monoid of 2-by-2 tropical matrices. Semigroup Forum 80(2), 191–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Izhakian, Z., Merlet, G.: Semigroup identities of tropical matrices through matrix ranks, Preprint https://arxiv.org/abs/1806.11028 (2018)

  17. Jaszuńska, J., Okniński, J.: Structure of Chinese algebras. J. Algebra 346(1), 31–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Johnson, M., Kambites, M.: Tropical representations and identities of plactic monoids. Trans. Amer. Math. Soc. 374(6), 4423–4447 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kubat, Ł, Okniński, J.: Irreducible representations of the Chinese monoid. J. Algebra 466, 1–33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lascoux, A., Schützenberger, M.-P.: Schubert polynomials and the Littlewood-Richardson rule. Lett. Math. Phys. 10(2–3), 111–125 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lothaire, M.: Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications, vol. 90. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  22. Okniński, J.: Identities of the semigroup of upper triangular tropical matrices. Comm. Algebra 43(10), 4422–4426 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sagan, B.E.: The ubiquitous Young tableau. In: Stanton, D. (ed.) Invariant Theory and Tableaux, The IMA Volumes in Mathematics and its Applications, vol. 19, pp. 262–298. Springer, New York, NY (1990)

    Google Scholar 

  24. Sagan, B.E.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd ed. Graduate Texts in Mathematics, vol. 203, Springer, New York, NY (2000)

  25. Shitov, Y.: A semigroup identity for tropical \(3\times 3\) matrices, Preprint https://arxiv.org/abs/1406.2601 (2014)

  26. Simon, I.: Recognizable sets with multiplicities in the tropical semiring. In: Chytil, M., Janiga, L., Koubek, V. (eds.) Mathematical Foundations of Computer Science 1988 (MFCS 1988). Lecture Notes in Comput. Sci., vol. 324, pp. 107–120. Springer, Berlin, Heidelberg (1988)

Download references

Acknowledgements

The results within this paper were obtained under the auspices of the Research in Pairs program of the Mathematisches Forschungsinstitut Oberwolfach, Germany. The authors thank MFO for the excellent working environment.The authors thank the referee for many helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zur Izhakian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Mikhail Volkov.

Appendices

Appendix A. Linear representation of \(\textsf{Ch}_2\)

The Chinese monoid \(\textsf{Ch}_2\) of rank 2 is the presented monoid \( \textsf{Ch}_2:= \langle a, b \rangle ,\) subject to the relations

$$\begin{aligned} aba = baa \qquad bba = bab, \end{aligned}$$
(CH2)

obtained from (CH) by first letting \(a_i = a \), \(a_j = a_k = b\), and then taking \(a_i = a_j = a \), \(a_k = b\). Each element \(x \in \textsf{Ch}_2 \) can be uniquely written in the canonical form

$$\begin{aligned} \mathfrak {C}(x) =a^i (ba)^j b ^k, \qquad i,j,k \in \mathbb N_0, \end{aligned}$$

with \(i = k_{11}\), \(j = k_{21}\), \(k = k_{22}\) in the notation of (CFb).

Recall that \(\mathcal U_2(\mathbb T)\) is the submonoid of \(2 \times 2 \) upper triangular tropical matrices. In the matrices below we write “\(-\)" for “\(-\infty \)", for short. We define the map \(\rho : \textsf{Ch}_2 \rightarrow \mathcal U_2(\mathbb T)\) by the generators’ mapping

$$\begin{aligned} a \mapsto A = \begin{pmatrix} 1 &{} 0 \\ - &{} 0 \end{pmatrix} , \qquad b \mapsto B = \begin{pmatrix} 1 &{} 0 \\ - &{} 0 \end{pmatrix} \qquad e \mapsto E = \begin{pmatrix} 1 &{} 0 \\ - &{} 0 \end{pmatrix} . \end{aligned}$$
(M1)

A straightforward computation shows that

$$\begin{aligned} ABA = BAA = \begin{pmatrix} 2 &{} 1 \\ - &{} 1 \end{pmatrix}, \qquad BBA = BAB = \begin{pmatrix} 1 &{} 1 \\ - &{} 2 \end{pmatrix} \end{aligned}$$
(M2)

and thus \(\rho \) is a representation.

For an arbitrary \(x \in \textsf{Ch}_2\), a straightforward computation gives

$$\begin{aligned} a^i (ba)^j b ^k \longmapsto X= A^i (BA)^j B ^k&= \begin{pmatrix} i &{} i-1 \\ - &{} 0 \end{pmatrix} \begin{pmatrix} j &{} j-1 \\ - &{} j \end{pmatrix} \begin{pmatrix} 0 &{} k-1 \\ - &{} k \end{pmatrix}\\&= \begin{pmatrix} i+j &{} i+j+k-1 \\ - &{} j+k \end{pmatrix} \end{aligned}$$

so that i, j, and k can be uniquely determined by X. That is \(i = X_{12}-X_{22} +1\), \(j = X_{11} + X_{22} - X_{12} -1\), and \(k = X_{12}- X_{11} +1\). Therefore, \(\rho : \textsf{Ch}_2 \rightarrow \mathcal U_2(\mathbb T)\) is a faithful representation.

Appendix B. Linear representations of \(\textsf{Ch}_3\)

Concerning the Chinese monoid \(\textsf{Ch}_3:= \langle a,b, c \rangle \) of rank 3, we begin by constructing three linear representations

$$\begin{aligned} \rho _\ell : \textsf{Ch}_3 \longrightarrow \mathcal M_2(\mathbb T), \qquad \ell = 1,2,3, \end{aligned}$$

in terms of generator maps.Footnote 1 These representations are later combined together to form a faithful representation of \(\textsf{Ch}_3\). Let  x be an element of \(\textsf{Ch}_3\), written in the canonical form

$$\begin{aligned} x = a^{k_{11}} (ba)^{ k_{21}} b^{ k_{22}} (ca)^{ k_{31}} (cb)^{k_{32}} c^{k_{33}}. \end{aligned}$$
(CF3)

1.1 Representations I and II

Applying Corollary  1.2 with \(\ell = 1,2\) to the faithful linear representation \(\rho : \textsf{Ch}_2 \rightarrow \mathcal U_2(\mathbb T)\) defined by  (M1) yields the two (non-faithful) representations \(\rho _1, \rho _2: \textsf{Ch}_3 \rightarrow \mathcal U_2(\mathbb T)\), given by:

$$\begin{aligned} \rho _1(a) = \rho _1(b) = A, \ \rho _1(c) = B, \qquad \rho _2(a) = A, \ \rho _2(b) = \rho _2(c) = B. \end{aligned}$$

Then, using Lemma 1.4 (or just a direct calculation), one can show that the matrix image of (CF3) with respect to \(\rho _1\) and \(\rho _2\) is

$$\begin{aligned} \rho _1(x)&= \begin{pmatrix} k_{11}+2 k_{21}+k_{22}+k_{31}+k_{32} &{} k_{11}+2 k_{21}+k_{22} + k_{31}+k_{32} + k_{33}- 1 \\ - &{} k_{31}+k_{32} +k_{33}, \end{pmatrix} \end{aligned}$$
(R1)
$$\begin{aligned} \rho _2(x)&= \begin{pmatrix} k_{11}+k_{21}+k_{31} &{} k_{11}+k_{21}+ k_{22}+k_{31} +2 k_{32}+k_{33}-1\\ - &{} k_{21}+ k_{22}+k_{31}+2 k_{32}+k_{33} \end{pmatrix} \end{aligned}$$
(R2)

1.2 Representation III

Define \(\rho _3: \textsf{Ch}_3 \rightarrow \mathcal U_2(\mathbb T)\) by the generators’ mapping

$$\begin{aligned} a \mapsto A = \begin{pmatrix} 1 &{} 1 \\ - &{} 0 \end{pmatrix} \quad b \mapsto B = \begin{pmatrix} 0 &{} 0 \\ - &{} 0 \end{pmatrix} \quad c \mapsto C = \begin{pmatrix} 0 &{} 1\\ - &{} 1 \end{pmatrix}, \quad e \mapsto E = B. \end{aligned}$$

Note that the matrix B is idempotent, i.e., \(B^2 = B\), which acts identically on the left and right of both A and C. So, to verify the relations (CH) it suffices to check that \(ACA = CAA\), \(BCA = CBA = CAB\) and \(CCA = CAC\) (the other relations \(BBA = BAB \), \(ABA = BAA\), \(B C B = CBB\), \(CCB = CBC \) are immediate). Indeed, for these matrices we have the products

$$\begin{aligned} \begin{array}{c} BCA = CBA = CAB \begin{pmatrix} 1 &{} 1 \\ - &{} 1 \end{pmatrix}, \\ A C A = CAA = \begin{pmatrix} 2 &{} 2 \\ - &{} 1 \end{pmatrix}\quad CCA = CAC = \begin{pmatrix} 1 &{} 2 \\ - &{} 2 \end{pmatrix} \end{array} \end{aligned}$$
(M3)

so that the relations (CH) are satisfied. Then, an element \(x \in \textsf{Ch}_3\) of the form (CF3) is mapped to

$$\begin{aligned} \rho _3(x)&= A^{k_{11}}(BA)^{k_{21}}B^{k_{22}}(CA)^{k_{31}}(CB)^{k_{32}}C^{k_{33}} \\ {}&= A^{k_{11}}(A)^{k_{21}}(CA)^{k_{31}}(C)^{k_{32}}C^{k_{33}}\\&=A^{k_{11}+k_{21}}(CA)^{k_{31}}(C)^{k_{32}+k_{33}}\\&= \begin{pmatrix} k_{11}+k_{21} &{} k_{11}+k_{21} \\ - &{} 0 \end{pmatrix} \begin{pmatrix} k_{31} &{}k_{31}\\ - &{} k_{31} \end{pmatrix} \begin{pmatrix} 0 &{}k_{32}+k_{33} \\ - &{} k_{32}+k_{33} \end{pmatrix}\\&= \begin{pmatrix} k_{11}+k_{21}+k_{31} &{} k_{11}+k_{21}+ k_{31}+k_{32} + k_{33} \\ - &{} k_{31}+k_{32} + k_{33} \end{pmatrix} \end{aligned}$$
(R3)

Remark 2.2

Note that, \(k_{11}, k_{21}, k_{22}, k_{31}, k_{32}, k_{33} \in \mathbb N_0\), which represent \(x \in \textsf{Ch}_3\) in the canonical form (CF3), are mapped (injectively) by \(\rho _1\), \(\rho _2\), \(\rho _3\) to three matrices (R1), (R2), (R3), having together 9 entries with values in \(\mathbb N_0\). Thus, by the standard operations of \(\mathbb R\), the exponent sequence \(\chi _3(x) = (k_{11}, \dots , k_{33})\) of \(x \in \textsf{Ch}_3\), and therefore its canonical form (CF3), can be recovered from the matrices (R1), (R2), (R3).

1.3 A faithful representation

Together, the three representations \(\rho _1, \rho _2, \rho _3\) in (R1), (R2), (R3), provide the combined representation

$$\begin{aligned} \widetilde{\rho }:= (\rho _1, \rho _2, \rho _3) : \textsf{Ch}_3 \longrightarrow \big (\mathcal M_2(\mathbb T)\big )^3, \end{aligned}$$
(R)

given in terms of generators’ mapping. Since \(\rho _1, \rho _2, \rho _3\) are homomorphisms, it is easily seen from (M2) and (M3) that

$$\begin{aligned} \begin{array}{c} \widetilde{\rho }(bca) = \widetilde{\rho }(cba) = \widetilde{\rho }(cab), \qquad \widetilde{\rho }(aba) = \widetilde{\rho }(baa), \qquad \widetilde{\rho }(bba) = \widetilde{\rho }(bab), \\ \widetilde{\rho }(ccb) = \widetilde{\rho }(cbc), \qquad \widetilde{\rho }(bcb) = \widetilde{\rho }(cbb), \qquad \widetilde{\rho }(cca) = \widetilde{\rho }(cac), \qquad \widetilde{\rho }(aca) = \widetilde{\rho }(caa),\end{array} \end{aligned}$$

where each is different from one another. Moreover, each is also different from \(\widetilde{\rho }(bac) \ne \widetilde{\rho }(abc) \ne \widetilde{\rho }(acb)\), which are also different one from another. The product \(\big (\mathcal M_2(\mathbb T)\big )^3\) embeds as diagonal blocks in \(\mathcal M_6(\mathbb T)\), so that \(\widetilde{\rho }\) can be realized as a map \(\textsf{Ch}_3 \rightarrow \mathcal M_6(\mathbb T)\).

Lemma 2.3

The map (R) is an injective semigroup homomorphism.

Proof

Let x be an element of \(\textsf{Ch}_3\), written in the canonical from (CF3). The entries \(X_{ij}\), \(Y_{ij}\), \(Z_{ij}\) of the matrix images \(X = \rho _1(x)\), \(Y = \rho _2(x)\), \(Z = \rho _3(x)\) give the following system of equations

$$\begin{aligned} \begin{array}{lrll} &{} X_{11} &{} = k_{11} +2 k_{21}+k_{22} + k_{31}+k_{32}, \\ &{} X_{12} &{} = k_{11}+2 k_{21}+ k_{22} + k_{31}+k_{32} + x_{33} - 1, \\ &{} X_{22} = Z_{22} &{} = k_{31}+k_{32} + k_{33}, \\ &{} Y_{11} = Z_{11}&{} = k_{11}+k_{21}+k_{31}, \\ &{} Y_{12} &{} = k_{11}+ k_{21}+k_{22}+ k_{31} +2 k_{32} +k_{33}-1, \\ &{} Y_{22} &{} = k_{21}+k_{22} +k_{31}+2 k_{32} +k_{33}, \\ &{} Z_{12} &{} =k_{11} +k_{21} + k_{31} +k_{32} + k_{33}, \end{array} \end{aligned}$$

cf. (R1), (R2),(R3) respectively. This system has a unique solution, so that the exponents \(k_{11}\), \(k_{21}\), \(k_{22}\), \(k_{31}\), \(k_{32}\), \(k_{33}\) are uniquely determined (cf. Remark 2.2). Hence the homomorphism \(\widetilde{\rho }\) in (R) is injective. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izhakian, Z., Merlet, G. Tropical linear representations of the Chinese monoid. Semigroup Forum 107, 144–157 (2023). https://doi.org/10.1007/s00233-023-10353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-023-10353-2

Keywords

Navigation