Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 22, 2023

Synthesis, characterization, luminescence, and catalytic properties of a zinc(II) complex with a N,O-donor ligand generated in situ from topiroxostat

  • Chen-Chen Qin , Zhong-Hua Sun , Xin Rong , Sheng-Chun Chen , Ming-Yang He and Qun Chen

Abstract

By utilizing the well-known selective xanthine oxidase inhibitor topiroxostat, a new zinc(II) complex Zn(L)2(H2O)2 (1) [HL = 4-(3-(pyridine-4-yl)-1H-1,2,4-triazol-5-yl)picolinic acid] has been hydrothermally synthesized, involving in-situ ligand formation upon hydrolysis of topiroxostat. The complex has been structurally characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction. X-ray structural analysis revealed that complex 1 is a N,O-chelating mononuclear Zn(II) complex. Complex 1 shows good thermal stability and exhibits photoluminescence in the solid state at room temperature. Moreover, complex 1 has been shown to be effective in the solvent-free ring-opening polymerization of ε-caprolactone without any co-catalyst or initiator.


Corresponding author: Sheng-Chun Chen, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R. China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: Unassigned

Funding source: Priority Academic Program Development of Jiangsu Higher Education Institutions

Award Identifier / Grant number: Unassigned

Funding source: Changzhou University

Award Identifier / Grant number: Unassigned

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by the National Natural Science Foundation of China (21676030), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Advanced Catalytic and Green Manufacturing Collaborative Innovation Center, Changzhou University and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (ZZZD201807).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Spokoyny, A. M., Kim, D., Sumrein, A., Mirkin, C. A. Chem. Soc. Rev. 2009, 38, 1218–1227; https://doi.org/10.1039/b807085g.Search in Google Scholar PubMed

2. Adams, C. J., Haddow, M. F., Lusi, M., Orpen, A. G. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 16033–16038; https://doi.org/10.1073/pnas.0910146107.Search in Google Scholar PubMed PubMed Central

3. Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V., Pombeiro, A. J. L. Coord. Chem. Rev. 2014, 265, 1–37; https://doi.org/10.1016/j.ccr.2014.01.002.Search in Google Scholar

4. Yuan, R.-X., Xiong, R.-G., Abrahams, B. F., Lee, G.-H., Peng, S.-M., Che, C.-M., You, X.-Z. J. Chem. Soc., Dalton Trans. 2001, 14, 2071–2073; https://doi.org/10.1039/b104880p.Search in Google Scholar

5. Wang, S., Qin, J., Wang, X.-L., Qin, C., Li, T.-T., Su, Z.-M. CrystEngComm 2011, 13, 325–329; https://doi.org/10.1039/c004065g.Search in Google Scholar

6. Turel, I., Kljun, J., Perdih, F., Morozova, E., Bakulev, V., Kasyanenko, N., Byl, J. A. W. Osheroff, N. Inorg. Chem. 2010, 49, 10750–10752; https://doi.org/10.1021/ic101355d.Search in Google Scholar PubMed PubMed Central

7. Ling, Y., Zhang, L., Li, J., Fan, S.-S., Du, M. CrystEngComm 2010, 12, 604–611; https://doi.org/10.1039/b914049b.Search in Google Scholar

8. Huang, W.-Y., Li, J., Kong, S.-L., Wang, Z.-C., Zhu, H.-L. RSC Adv. 2014, 4, 35193–35204; https://doi.org/10.1039/c4ra05812g.Search in Google Scholar

9. Karami, K., Alinaghi, M., Amirghofran, Z., Lipkowski, J. Inorg. Chim. Acta 2018, 471, 797–807; https://doi.org/10.1016/j.ica.2017.02.027.Search in Google Scholar

10. Andre, V., Galego, F., Martins, M. Cryst. Growth Des. 2018, 18, 2067–2081; https://doi.org/10.1021/acs.cgd.7b01523.Search in Google Scholar

11. Sadeek, S. A., El-Hamid, S. M. A. J. Mol. Struct. 2016, 1122, 175–185; https://doi.org/10.1016/j.molstruc.2016.05.101.Search in Google Scholar

12. Yu, L.-C., Chen, Z.-F., Tan, M.-X., Liang, H., Zhou, C.-S., Zhang, Y. Chin. J. Chem. 2006, 24, 899–902; https://doi.org/10.1002/cjoc.200690171.Search in Google Scholar

13. Hosoya, T., Sasaki, T., Hashimoto, H., Sakamoto, R., Ohashi, T. J. Clin. Pharm. Ther. 2016, 41, 298–305; https://doi.org/10.1111/jcpt.12392.Search in Google Scholar PubMed

14. Jiang, L.-T., Chang, X., Chen, S.-C., Feng, X.-J., Chen, Q. Z. Naturforsch. 2019, 74b, 479–484; https://doi.org/10.1515/znb-2019-0011.Search in Google Scholar

15. Chang, X., Jiang, L.-T., Chen, S.-C., He, M.-Y., Chen, Q. J. Coord. Chem. 2020, 73, 439–452; https://doi.org/10.1080/00958972.2020.1734189.Search in Google Scholar

16. Xia, Z.-X., Huang, K.-L., Rong, X., Chen, S.-C., He, M.-Y., Chen, Q. Inorg. Chem. Commun. 2022, 145, 109906; https://doi.org/10.1016/j.inoche.2022.109906.Search in Google Scholar

17. Tong, M.-L., Li, L.-J., Mochizuki, K., Chang, H.-C., Chen, X.-M., Li, Y., Kitagawa, S. Chem. Commun. 2003, 3, 428–429; https://doi.org/10.1039/b210914j.Search in Google Scholar PubMed

18. Thirumurugan, A., Natarajan, S. Inorg. Chem. Commun. 2004, 7, 395–399; https://doi.org/10.1016/j.inoche.2003.12.023.Search in Google Scholar

19. Zhang, J.-Y., Yue, Q., Jia, Q.-X., Cheng, A.-L., Gao, E.-Q. CrystEngComm 2008, 10, 1443–1449; https://doi.org/10.1039/b807165a.Search in Google Scholar

20. Hu, T., Yang, J., Mak, T. C. W. CrystEngComm 2014, 16, 6316–6324; https://doi.org/10.1039/c3ce41671b.Search in Google Scholar

21. Yang, E.-C., Zhao, H.-K., Ding, B., Wang, X.-G., Zhao, X.-J. Cryst. Growth Des. 2007, 7, 2009–2015; https://doi.org/10.1021/cg070356n.Search in Google Scholar

22. Dutta, B., Bag, P., Flörke, U., Nag, K. Inorg. Chem. 2005, 44, 147–157; https://doi.org/10.1021/ic049056a.Search in Google Scholar PubMed

23. Liu, H.-Y., Wu, H., Ma, J.-F., Liu, Y.-Y., Liu, B., Yang, J. Cryst. Growth Des. 2010, 10, 4795–4805; https://doi.org/10.1021/cg100688z.Search in Google Scholar

24. Son, H.-J., Han, W.-S., Chun, J.-Y., Kang, B.-K., Kwon, S.-N., Ko, J., Han, S. J., Lee, C., Kim, S. J., Kang, S. O. Inorg. Chem. 2008, 47, 5666–5676; https://doi.org/10.1021/ic702491j.Search in Google Scholar PubMed

25. Labet, M., Thielemans, W. Chem. Soc. Rev. 2009, 38, 3484–3504; https://doi.org/10.1039/b820162p.Search in Google Scholar PubMed

26. Cameron, D. J. A., Shaver, M. P. Chem. Soc. Rev. 2011, 40, 1761–1776; https://doi.org/10.1039/c0cs00091d.Search in Google Scholar PubMed

27. Lyubov, D. M., Tolpygin, A. O., Trifonov, A. A. Coord. Chem. Rev. 2019, 392, 83–145; https://doi.org/10.1016/j.ccr.2019.04.013.Search in Google Scholar

28. Prochowicz, D., Sokołowski, K., Lewiński, J. Coord. Chem. Rev. 2014, 270–271, 112–126; https://doi.org/10.1016/j.ccr.2013.12.003.Search in Google Scholar

29. Hermann, A., Hill, S., Metz, A., Heck, J., Hoffmann, A., Hartmann, L., Herres-Pawlis, S. Angew. Chem. Int. Ed. 2020, 59, 21778–21784; https://doi.org/10.1002/anie.202008473.Search in Google Scholar PubMed PubMed Central

30. Albertsson, A.-C., Varma, I. K. Biomacromolecules 2003, 4, 1466–1486; https://doi.org/10.1021/bm034247a.Search in Google Scholar PubMed

31. Dechy-Cabaret, O., Martin-Vaca, B., Bourissou, D. Chem. Rev. 2004, 104, 6147–6176; https://doi.org/10.1021/cr040002s.Search in Google Scholar PubMed

32. Spek, A. L. Platon A Multipurpose Crystallographic Tool; Utrecht University: Utrecht (The Netherlands), 2002.Search in Google Scholar

33. Sheldrick, G. M. Sadabs, Program for Empirical Absorption Correction of Area Detector Data; University of Göttingen: Göttingen (Germany), 2002.Search in Google Scholar

34. SAINT Software Reference Manual (version 6.23). Bruker AXS Inc.: Madison, Wisconsin (USA), 1998.Search in Google Scholar

35. Sheldrick, G. M. Shelxtl NT (version 5.1), Program for Solution and Refinement of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar

36. Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467–473; https://doi.org/10.1107/s0108767390000277.Search in Google Scholar

37. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2022-0148).


Received: 2022-12-15
Accepted: 2023-03-01
Published Online: 2023-06-22
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2022-0148/html
Scroll to top button