Skip to main content
Log in

Effect of Metal-Containing Anions on the Catalytic Properties of Imidazolium Derivatives Immobilized on Silochrome in Oxidative Desulfurization

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

A comparative analysis is performed for the properties of two Fenton-type catalysts in the oxidation of sulfur-containing compounds with hydrogen peroxide and the desulfurization of crude oil. The catalysts are based on Cu(I) and Fe(III), and Mo(VI) and W(VI) polyoxometalates. Heterogeneous samples are imidazolium salts chemically immobilized on surfaces of silochrome and contain the iron and copper chloride complexes or phosphomolybdic and phosphotungstic acid anions. Thiophene (T), dibenzothiophene (DBT), methylphenyl sulfide (MPS), and a diesel fraction with an initial amount of sulfur of 1080 ppm are used as model substrates. It is found that the order of reactivity of thiophene substrates depends on the nature of metal-containing anions: thiophene > DBT on the Cu and Fe catalysts and DBT > thiophene on the polyoxometalate catalysts. This effect is explained using literature data. The catalyst based on phosphotungstic acid allows desulfurization of the diesel fraction of oil to amounts of sulfur of < 10 ppm, which meets today’s environmental standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Tanimu, A. and Alhooshani, K., Energy Fuels, 2019, vol. 33, no. 4, pp. 2810–2838. https://doi.org/10.1021/acs.energyfuels.9b00354

    Article  CAS  Google Scholar 

  2. Rajendran, A., Cui, T., Fan, H., Yang, Z., Feng, J., and Li, W., J. Mater. Chem. A, 2020, vol. 8, no. 5, pp. 2246–2285. https://doi.org/10.1039/C9TA12555H

    Article  CAS  Google Scholar 

  3. Eseva, E.A., Akopyan, A.V., Anisimov, A.V., and Maksimov, A.L., Pet. Chem., 2020, vol. 60, no. 9, pp. 979–990. https://doi.org/10.1134/S0965544120090091

    Article  CAS  Google Scholar 

  4. Abdullah, S.B., Aziz, H.A., and Man, Z., in Recent Advances in Ionic Liquids, Rahman, M.M., Ed., London: IntechOpen 2018, pp. 107–120. https://doi.org/10.5772/intechopen.79281.

  5. Ibrahim, M.H., Hayyan, M., Hashim, M.A., and Hayyan, A., Renewable Sustainable Energy Rev., 2017, vol. 76, pp. 1534–1549. https://doi.org/10.1016/j.rser.2016.11.194

    Article  CAS  Google Scholar 

  6. Romanovskii, B.V. and Tarkhanova, I.G., Russ. Chem. Rev., 2017, vol. 86, no. 5, pp. 444–458. https://doi.org/10.1070/RCR4666

    Article  Google Scholar 

  7. Bryzhin, A.A., Rudnev, V.S., Lukiyanchuk, I.V., Vasil’eva, M.S., and Tarkhanova, I.G., Kinet. Catal., 2020, vol. 61, no. 2, pp. 283–290. https://doi.org/10.1134/S0023158420020020

    Article  CAS  Google Scholar 

  8. Xun, S., Zhu, W., Chang, Y., Li, H., Zhang, M., Jiang, W., Zheng, D., Qin, Y., and Li, H., Chem. Eng. J., 2016, vol. 288, pp. 608–617. https://doi.org/10.1016/j.cej.2015.12.005

    Article  CAS  Google Scholar 

  9. Li, X., Zhang, J., Zhou, F., Wang, Y., Yuan, X., and Wang, H., Mol. Catal., 2018, vol. 452, pp. 93–99. https://doi.org/10.1016/j.mcat.2017.09.038

    Article  CAS  Google Scholar 

  10. Abdullah, W.N.W., Bakar, W.A.W.A., Ali, R., Mokhtar, W.N.A.W., and Omar, M.F., J. Cleaner Prod., 2017, vol. 162, pp. 1455–1464. https://doi.org/10.1016/j.jclepro.2017.06.084

    Article  CAS  Google Scholar 

  11. Hao, Y., Hao, Y., Ren, J., Wu, B., Wang, X., Zhao, D., and Li, F., New J. Chem., 2019, vol. 43, no. 20, pp. 7725–7732. https://doi.org/10.1039/C9NJ00691E

    Article  CAS  Google Scholar 

  12. Ivanin, I.A., Ali-Zade, A.G., Golubeva, E.N., Zubanova, E.M., Zelikman, V.M., Buryak, A.K., and Tarkhanova, I.G., Mol. Catal., 2020, vol. 484, article no. 110727. https://doi.org/10.1016/j.mcat.2019.110727

    Article  CAS  Google Scholar 

  13. Ali-Zade, A.G., Buryak, A.K., Zelikman, V.M., Oskolok, K.V., and Tarkhanova, I.G., New J. Chem., 2020, vol. 44, no. 16, pp. 6402–6410. https://doi.org/10.1039/C9NJ05403K

    Article  CAS  Google Scholar 

  14. Baltrusaitis, J., Mendoza-Sanchez, B., Fernandez, V., Veenstra, R., Dukstiene, N., Roberts, A., and Fairley, N., Appl. Surf. Sci., 2015, vol. 326, pp. 151–161. https://doi.org/10.1016/j.apsusc.2014.11.077

    Article  CAS  Google Scholar 

  15. Jalil, P.A., Faiz, M., Tabet, N., Hamdan, N.M., and Hussain, Z., J. Catal., 2003, vol. 217, no. 2, pp. 292–297. https://doi.org/10.1016/S0021-9517(03)00066-6

    Article  CAS  Google Scholar 

  16. Zhang, B., Jiang, Z., Li, J., Zhang, Y., Lin, F., Liu, Y., and Li, C., J. Catal., 2012, vol. 287, pp. 5–12. https://doi.org/10.1016/j.jcat.2011.11.003

    Article  CAS  Google Scholar 

  17. Craven, M., Xiao, D., Kunstmann-Olsen, C., Kozhevnikova, E.F., Blanc, F., Steiner, A., and Kozhevnikov, I.V., Appl. Catal., B, 2018, vol. 231, pp. 82–91. https://doi.org/10.1016/j.apcatb.2018.03.005

    Article  CAS  Google Scholar 

  18. Song, C., Catal. Today, 2003, vol. 86, nos. 1–4, pp. 211–263. https://doi.org/10.1016/S0920-5861(03)00412-7

  19. Ghubayra, R., Nuttall, C., Hodgkiss, S., Craven, M., Kozhevnikova, E.F., and Kozhevnikov, I.V., Appl. Catal., B, 2019, vol. 253, pp. 309–316. https://doi.org/10.1016/j.apcatb.2019.04.063

    Article  CAS  Google Scholar 

  20. Li, J., Yang, Z., Li, S., Jin, Q., and Zhao, J., J. Ind. Eng. Chem., 2020, vol. 82, pp. 1–16. https://doi.org/10.1016/j.jiec.2019.10.020

    Article  CAS  Google Scholar 

  21. Luna, M.L., Alvarez-Amparán, M.A., and Cedeño-Caero, L., J. Taiwan Inst. Chem. Eng., vol. 95, pp. 175–184. https://doi.org/10.1016/j.jtice.2018.06.010

  22. Feng, Y., Lee, P.-H., Wu, D., Zhou, Z., Li, H., and Shih, K., J. Hazard. Mater., 2017, vol. 331, pp. 81–87. https://doi.org/10.1016/j.jhazmat.2017.02.029

    Article  CAS  PubMed  Google Scholar 

  23. Hwang, S., Huling, S.G., and Ko, S., Chemosphere, 2010, vol. 78, no. 5, pp. 563–568. https://doi.org/10.1016/j.chemosphere.2009.11.005

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed on an equipment purchased as part of the Developmental Program of Moscow State University.

Funding

This work was performed as part of state task no. АААА-А21-121011590090-7 for the Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Tarkhanova.

Ethics declarations

The authors state they have no conflicts of interest.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarkhanova, I.G., Ali-Zade, A.G., Buryak, A.K. et al. Effect of Metal-Containing Anions on the Catalytic Properties of Imidazolium Derivatives Immobilized on Silochrome in Oxidative Desulfurization. Catal. Ind. 15, 125–131 (2023). https://doi.org/10.1134/S2070050423020101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050423020101

Keywords:

Navigation