Skip to main content
Log in

Valuation of mixed life insurance contracts under stochastic correlated mortality and interest rates

  • Original Research Paper
  • Published:
European Actuarial Journal Aims and scope Submit manuscript

Abstract

The need to find a good balance between attractive returns and long-term guarantees has motivated the development of hybrid life insurance products. In these contracts, the premium payments are distributed between a participating and a unit-linked fund, where an additional guarantee fee is applied to the unit-linked return in order to increase the investment guarantee of the participating fund. Moreover, the traditional pricing approach in life insurance is based on models for the financial elements and the mortality elements without any correlations between them. However, recent trends, such as the recent COVID-19 pandemic or the effect of ageing on stock market preferences, motivate us to account for the correlation between changes in demographic trends and the value of financial assets. The purpose of this paper is to price the mixed insurance contract based on longevity and to propose a multi-dimensional approach to explicitly studying the dependence between financial and mortality risks in a joint stochastic continuous time model of interest rates, stock returns, and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alexandrova M, Bohnert A, Gatzert N, Ruß J (2017) Equity-linked life insurance based on traditional products: the case of Select Products. European Actuarial Journal 7(2):379–404

    Article  ADS  MathSciNet  Google Scholar 

  2. Arık A, Yolcu-Okur Y, Şahin Ş, Uğur Ö (2018) Pricing pension buy-outs under stochastic interest and mortality rates. Scandinavian Actuarial Journal 3:173–190

    Article  MathSciNet  Google Scholar 

  3. Artzner P, Eisele KT, Schmidt T (2020) No arbitrage in insurance and the QP-rule. Available at SSRN: https://ssrn.com/abstract=3607708

  4. Bacinello AR (2001) Fair pricing of life insurance participating policies with a minimum interest rate guaranteed. Astin Bulletin 31(2):275–298

    Article  MathSciNet  Google Scholar 

  5. Bernard C, Le Courtois O, Quittard-Pinon F (2005) Market value of life insurance contracts under stochastic interest rates and default risk. Insurance: Mathematics and Economics 36(3):499–516

    MathSciNet  Google Scholar 

  6. Biffis E (2005) Affine processes for dynamic mortality and actuarial valuations. Insurance: Mathematics and Economics 37(3):443–468

    MathSciNet  Google Scholar 

  7. Bohnert A, Born P, Gatzert N (2014) Dynamic hybrid products in life insurance: Assessing the policyholder’s viewpoint. Insurance: Mathematics and Economics 59:87–99

    MathSciNet  Google Scholar 

  8. Bohnert A, Gatzert N (2014) Fair Valuation and Risk Assessment of Dynamic Hybrid Products in Life Insurance: A Portfolio Consideration. The Geneva Papers on Risk and Insurance - Issues and Practice 39:148–172

    Article  Google Scholar 

  9. Cairns A (1998) Descriptive bond-yield and forward-rate models for the British government securities market. British Actuarial Journal 4:265–321

    Article  Google Scholar 

  10. Cairns A, Blake D, Dowd K (2006) Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk. Astin Bulletin 36(1):79–120

    Article  MathSciNet  Google Scholar 

  11. Dacorogna M, Cadena M (2015) Exploring the dependence between mortality and market risks. SCOR Papers

  12. Deelstra G, Grasselli M, Van Weverberg C (2016) The role of the dependence between mortality and interest rates when pricing Guaranteed Annuity Options. Insurance: Mathematics and Economics 71:205–219

    MathSciNet  Google Scholar 

  13. Devolder P, Azizieh C (2013) Margrabe option and life insurance with participation. Bulletin d’actuariat français 13:47–77

    Google Scholar 

  14. Dhaene J, Kukush A, Luciano E, Schoutens W, Stassen B (2013) On the (in-)dependence between financial and actuarial risks. Insurance: Mathematics and Economics 52(3):522–531

    MathSciNet  Google Scholar 

  15. Døskeland T, Nordahl H (2008) Optimal pension insurance design. Journal of banking and finance 32:382–392

    Article  Google Scholar 

  16. Gao H, Mamon R, Liu X (2015) Pricing a guaranteed annuity option under correlated and regime-switching risk factors. European Actuarial Journal 5(2):309–326

    Article  MathSciNet  Google Scholar 

  17. Gatzert N, Huber C, Schmeiser H (2011) On the valuation of investment guarantees in unit-linked life insurance: A customer perspective. The Geneva Papers on Risk and Insurance - Issues and Practice 36:3–29

    Article  Google Scholar 

  18. Hanna V, Hieber P, Devolder P (2022) Mixed participating and unit-linked life insurance contracts: design, pricing and optimal strategy. Scandinavian Actuarial Journal 5:421–446

    Article  MathSciNet  Google Scholar 

  19. Hull J, White A (1990) Pricing interest rate derivative securities. Review of Financial Studies 3:573–592

    Article  Google Scholar 

  20. Jalen L, Mamon R (2009) Valuation of contingent claims with mortality and interest rate risks. Mathematical and Computer Modelling 49:1893–1904

    Article  MathSciNet  Google Scholar 

  21. Liu X, Mamon R, Gao H (2014) A generalized pricing framework addressing correlated mortality and interest risks: a change of probability measure approach. Stochastics: An International Journal of Probability and Stochastic Processes 86(4):594–608

    Article  MathSciNet  Google Scholar 

  22. Maurer T (2011) Asset Pricing Implications of Demographic Change. 24th Australasian Finance and Banking Conference

  23. Milevsky M, Promislow S (2001) Mortality derivatives and the option to annuitize. Insurance: Mathematics and Economics 29:299–318

    MathSciNet  Google Scholar 

  24. Reuß A, Ruß J, Wieland J (2015) Participating life insurance contracts under risk based solvency frameworks: How to increase capital efficiency by product design. Innovations in Quantitative Risk Management. Springer Proceedings in Mathematics & Statistics 99:185–208

    Google Scholar 

  25. Reuß A, Ruß J, Wieland J (2016) Participating life insurance products with alternative guarantees: Reconciling policyholders’ and insurers’ interests. Risks 4:11

    Article  Google Scholar 

  26. Ruß J, Schelling S (2021) Return smoothing in life insurance from a client perspective. Insurance: Mathematics and Economics 36:245

    MathSciNet  Google Scholar 

  27. Zeddouk F, Devolder P (2020) Mean reversion in stochastic mortality: why and how? European Actuarial Journal 10:499–525

    Article  MathSciNet  Google Scholar 

  28. Zhao Y, Mamon R (2018) An efficient algorithm for the valuation of a guaranteed annuity option with correlated financial and mortality risks. Insurance: Mathematics and Economics 78:1–12

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We want to thank the anonymous reviewers and participants of the 10th International Hybrid Conference on Mathematical and Statistical Methods for Actuarial Sciences and Finance for many insightful remarks and discussions.

Funding

This work was supported by the chair Fondation Louvain - Ethias.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Hanna.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Proposition 1

After defining the T-forward measure, \({\textrm{d}}{\tilde{W}}_t^r = {\textrm{d}}W_t^r + \int _0^t \sigma _r \, B_r(s,T,\theta ) ds\)   is a \({{\mathbb {Q}}}^T\)-Brownian motion.

We need then to write the dynamic of the intensity of mortality \(\mu _x(t)\) under the T-forward measure, that is,

$$\begin{aligned} {\textrm{d}}\mu _x(t) = \,&b \, ({\tilde{\xi }}_t - \mu _x(t)) \, {\textrm{d}}t + \sigma _{\mu } \, \rho _{r,\mu } \, {\textrm{d}}{\tilde{W}}_t^r + \sigma _{\mu } \, {\overline{\rho }}_{G,\mu } \, \sqrt{1 - \rho _{r,\mu }^{2}} \, {\textrm{d}}{\tilde{W}}_t^G \\&+ \, \sigma _{\mu } \, \overline{{\overline{\rho }}}_{H,\mu } \, \sqrt{(1 - \rho _{r,\mu }^{2})(1 - {\overline{\rho }}_{G,\mu }^{2})} \, {\textrm{d}}{\tilde{W}}_t^H \\&+\, \sigma _{\mu } \, \sqrt{(1 - \rho _{r,\mu }^{2})(1 - {\overline{\rho }}_{G,\mu }^{2})(1-\overline{{\overline{\rho }}}_{H,\mu }^{2})} \, {\textrm{d}}{\tilde{W}}_t^{\mu };\\&\quad {\tilde{\xi }}_t = \xi _t - \sigma _{\mu } \, \sigma _r \, \rho _{r,\mu } \frac{B_r(t,T,\theta )}{b}, \end{aligned}$$

where \({\textrm{d}}{\tilde{W}}_t^G = {\textrm{d}}W_t^G,\) \({\textrm{d}}{\tilde{W}}_t^H = {\textrm{d}}W_t^H\) and \({\textrm{d}}{\tilde{W}}_t^{\mu } = {\textrm{d}}W_t^{\mu }\) are \({{\mathbb {Q}}}^T\)-Brownian motions.

As a result,

$$\begin{aligned} {{\mathbb {E}}}^{{{\mathbb {Q}}}^T}\left[ e^{- \int _0^T \mu _x(s) ds}\right]&= \, \exp \left( -\mu _x(0) \cdot B_{\mu }(0,T,b) \right. \\&\quad \left. - b \int _0^T {\tilde{\xi }}_s \cdot B_{\mu }(s,T,b) ds + \frac{\sigma _{\mu }^2}{2} \int _0^T B_{\mu }^2(s,T,b) ds \right) \\&= \, \exp \Bigg (-\mu _x(0) \cdot B_{\mu }(0,T,b) - b \int _0^T \xi _s \cdot B_{\mu }(s,T,b) ds \\&\quad +\, \sigma _r \, \sigma _{\mu } \, \rho _{r,\mu } \int _0^T B_r(s,T,\theta ) \cdot B_{\mu }(s,T,b) ds + \frac{\sigma _{\mu }^2}{2} \int _0^T B_{\mu }^2(s,T,b) ds \Bigg )\\&= \, \exp \left( -\mu _x(0) \cdot B_{\mu }(0,T,b) \right. \\&\quad \left. -\, b \int _0^T \xi _s \cdot B_{\mu }(s,T,b) ds + \frac{\sigma _{\mu }^2}{2} \int _0^T B_{\mu }^2(s,T,b) ds \right) \\&\quad \cdot \, \exp \left( \sigma _r \, \sigma _{\mu } \, \rho _{r,\mu } \int _0^T B_r(s,T,\theta ) \cdot B_{\mu }(s,T,b) ds\right) \\&= \, p_x(0,T) \cdot \rho (0,T), \end{aligned}$$

where \(\rho (0,T)\) is the term of correlation that arises from the dependence only between the interest rate and the mortality rate, defined in Eq. (16).

Appendix B: Proof of Proposition 2

By computing the Radon–Nikodym derivative, we obtain

$$\begin{aligned} \frac{{\textrm{d}}{{\mathbb {Q}}}^{\mu }}{{\textrm{d}}{{\mathbb {Q}}}^T} \,&= \, \exp \Bigg (- \sigma _{\mu } \, \rho _{r,\mu } \int _0^T B_{\mu }(s,T,b) \, {\textrm{d}}{\tilde{W}}_s^r - \sigma _{\mu } \, {\overline{\rho }}_{G,\mu } \, \sqrt{1-\rho _{r,\mu }^{2}} \int _0^T B_{\mu }(s,T,b) \, {\textrm{d}}{\tilde{W}}_s^G \\&\quad - \sigma _{\mu } \, \overline{{\overline{\rho }}}_{H,\mu } \, \sqrt{(1-\rho _{r,\mu }^{2})(1-{\overline{\rho }}_{G,\mu }^{2})} \int _0^T B_{\mu }(s,T,b) \, {\textrm{d}}{\tilde{W}}_s^H\\&\quad - \sigma _{\mu } \, \sqrt{(1-\rho _{r,\mu }^{2})(1-{\overline{\rho }}_{G,\mu }^{2})(1-\overline{{\overline{\rho }}}_{H,\mu }^{2})} \int _0^T B_{\mu }(s,T,b) \, {\textrm{d}}{\tilde{W}}_s^{\mu }\\&\quad - \frac{1}{2} \sigma _{\mu }^2 \, \rho _{r,\mu }^{2} \int _0^T B_{\mu }^2(s,T,b) \, {\textrm{d}}s - \frac{1}{2} \sigma _{\mu }^2 \, {\overline{\rho }}_{G,\mu }^{2} (1-\rho _{r,\mu }^{2}) \int _0^T B_{\mu }^2(s,T,b) \, {\textrm{d}}s\\&\quad - \frac{1}{2} \sigma _{\mu }^2 \, \overline{{\overline{\rho }}}_{H,\mu }^{2} (1-\rho _{r,\mu }^{2})(1-{\overline{\rho }}_{G,\mu }^{2}) \int _0^T B_{\mu }^2(s,T,b) \, {\textrm{d}}s\\&\quad - \frac{1}{2} \sigma _{\mu }^2 \, (1-\rho _{r,\mu }^{2})(1-{\overline{\rho }}_{G,\mu }^{2})(1-\overline{{\overline{\rho }}}_{H,\mu }^{2}) \int _0^T B_{\mu }^2(s,T,b) \, {\textrm{d}}s\Bigg ). \end{aligned}$$

Then, \({\left\{ \begin{array}{ll} \begin{array}{ll} {\textrm{d}}{\hat{W}}_t^r = {\textrm{d}}{\tilde{W}}_t^r + \sigma _{\mu } \, \rho _{r,\mu } \int _0^t B_{\mu }(s,T,b) {\textrm{d}}s\\ {\textrm{d}}{\hat{W}}_t^G = {\textrm{d}}{\tilde{W}}_t^G + \sigma _{\mu } \, {\overline{\rho }}_{G,\mu } \, \sqrt{1-\rho _{r,\mu }^{2}} \int _0^t B_{\mu }(s,T,b) {\textrm{d}}s\\ {\textrm{d}}{\hat{W}}_t^H = {\textrm{d}}{\tilde{W}}_t^H + \sigma _{\mu } \, \overline{{\overline{\rho }}}_{H,\mu } \, \sqrt{(1-\rho _{r,\mu }^{2})(1-{\overline{\rho }}_{G,\mu }^{2})} \int _0^t B_{\mu }(s,T,b) {\textrm{d}}s\\ {\textrm{d}}{\hat{W}}_t^{\mu } = {\textrm{d}}{\tilde{W}}_t^{\mu } + \sigma _{\mu } \, \sqrt{(1-\rho _{r,\mu }^{2})(1-{\overline{\rho }}_{G,\mu }^{2})(1-\overline{{\overline{\rho }}}_{H,\mu }^{2})} \int _0^t B_{\mu }(s,T,b) {\textrm{d}}s\\ \end{array} \end{array}\right. }\)

are \({{\mathbb {Q}}}^{\mu }\)-Brownian motions.

The objective is to compute the expectation of \(\bigg (\frac{G_T}{G_0} - K\bigg )^{+}\) under the new measure. So, we will express this expression as follows

$$\begin{aligned} \left( \frac{G_T}{G_0} - K\right) ^{+} = \frac{G_T}{G_0} \cdot {\mathbb {1}}_{\frac{G_T}{G_0}>K} - K \cdot {\mathbb {1}}_{\frac{G_T}{G_0}>K}. \end{aligned}$$

Hence,

$$\begin{aligned} {{\mathbb {E}}}^{{{\mathbb {Q}}}^{\mu }}\left[ \left( \frac{G_T}{G_0} - K\right) ^{+}\right] = {{\mathbb {E}}}^{{{\mathbb {Q}}}^{\mu }}\left[ \frac{G_T}{G_0} \cdot {\mathbb {1}}_{\frac{G_T}{G_0}>K}\right] - K \cdot {{\mathbb {E}}}^{{{\mathbb {Q}}}^{\mu }}\Big [{\mathbb {1}}_{\frac{G_T}{G_0}>K}\Big ]. \end{aligned}$$
(37)

Let’s express the dynamic of the fund G under \({{\mathbb {Q}}}^{\mu }\) in order to get the solution of its differential equation. We move first from the risk-neutral measure to the T-forward measure, then to the forward-mortality measure.

Under the forward measure:

$$\begin{aligned}&{\textrm{d}}G_t = (r_t - \sigma _G \, \sigma _r \, \rho _{r,G} \, B_r(t,T,\theta )) \, G_t \, {\textrm{d}}t + \sigma _G \, \rho _{r,G} \, G_t \, {\textrm{d}}{\tilde{W}}_t^r\\ {}&+ \, \sigma _G \, \sqrt{1-\rho _{r,G}^{2}} \, G_t \, {\textrm{d}}{\tilde{W}}_t^G. \end{aligned}$$

Under the forward-mortality measure:

$$\begin{aligned} {\textrm{d}}G_t =&\Big (r_t - \sigma _G \, \sigma _r \, \rho _{r,G} \, B_r(t,T,\theta ) - \sigma _G \, \sigma _{\mu } \, \rho _{G,\mu } \, B_{\mu }(t,T,b)\Big ) \, G_t \, {\textrm{d}}t \\&+ \sigma _G \, \rho _{r,G} \, G_t \, {\textrm{d}}{\hat{W}}_t^r + \sigma _G \, \sqrt{1-\rho _{r,G}^{2}} \, G_t \, {\textrm{d}}{\hat{W}}_t^G. \end{aligned}$$

After integration, we obtain the SDE of the latter expression as follows:

$$\begin{aligned} G_t&= G_0 \cdot \exp \Bigg (\int _0^t r_s {\textrm{d}}s - \sigma _G \, \sigma _r \, \rho _{r,G} \int _0^t B_r(s,T,\theta ) {\textrm{d}}s - \sigma _G \, \sigma _{\mu } \, \rho _{G,\mu } \int _0^t B_{\mu }(s,T,b) {\textrm{d}}s \\&\quad - \, \frac{\sigma _G^2}{2} \cdot t + \sigma _G \, \rho _{r,G} \int _0^t {\textrm{d}}{\hat{W}}_s^r \\&\quad + \, \sigma _G \, \sqrt{1-\rho _{r,G}^2} \int _0^t {\textrm{d}}{\hat{W}}_s^G\Bigg ). \end{aligned}$$

This can also be written as

$$\begin{aligned} \frac{G_T}{G_0}&= \frac{1}{P(0,T)} \cdot \exp \Bigg (- \, \sigma _G \, \sigma _r \, \rho _{r,G} \int _0^T B_r(s,T,\theta ) {\textrm{d}}s - \sigma _G \, \sigma _{\mu } \, \rho _{G,\mu } \int _0^T B_{\mu }(s,T,b) {\textrm{d}}s \\&\quad - \frac{\sigma _r^2}{2} \int _0^T B_r^2(s,T,\theta ) {\textrm{d}}s - \sigma _r \, \sigma _{\mu } \, \rho _{r,\mu } \int _0^T B_r(s,T,\theta ) \cdot B_{\mu }(s,T,b) {\textrm{d}}s \\&\quad - \, \frac{\sigma _G^2}{2} \cdot T + \int _0^T \, (\sigma _G \, \rho _{r,G} + \sigma _r \, B_r(s,T,\theta )){\textrm{d}}{\hat{W}}_s^r + \sigma _G \, \sqrt{1-\rho _{r,G}^{2}} \int _0^T {\textrm{d}}{\hat{W}}_s^G\Bigg ). \end{aligned}$$

Under \({{\mathbb {Q}}}^{\mu },\) \(\frac{G_T}{G_0}\) is log-normally distributed which allows us to write Equation (37) as

$$\begin{aligned} {{\mathbb {E}}}^{{{\mathbb {Q}}}^{\mu }}\left[ \left( \frac{G_T}{G_0} - K\right) ^{+}\right] \, =&\, {{\mathbb {E}}}^{{{\mathbb {Q}}}^{\mu }}\left[ \frac{G_T}{G_0} \Big | \frac{G_T}{G_0}>K\right] \cdot {{\mathbb {Q}}}^{\mu }\left[ \frac{G_T}{G_0}>K\right] - K \cdot {{\mathbb {Q}}}^{\mu }\left[ \frac{G_T}{G_0}>K\right] \\ =&\, e^{{\hat{m}}_G+ \frac{{\hat{v}}_G}{2}} \cdot \Phi \left( \frac{{\hat{m}}_G + {\hat{v}}_G - \ln K}{\sqrt{{\hat{v}}_G}}\right) - K \cdot \Phi \left( \frac{{\hat{m}}_G - \ln K}{\sqrt{{\hat{v}}_G}}\right) , \end{aligned}$$

where \(\Phi \) is the cumulative distribution function of a standard normal variable and \({\hat{m}}_G\) and \({\hat{v}}_G\) are, respectively, the expectation and the variance of \(\ln \left( \frac{G_T}{G_0}\right) \) under the forward-mortality measure, defined in Eqs. (17) and (18).

Appendix C: Proof of Proposition 3

We start by writing the dynamic of the fund F under the forward-mortality measure

$$\begin{aligned} {\textrm{d}}F_t&= \, \big (r_t \, - \varepsilon - \sigma _H \, \sigma _r \, \rho _{r,H} \, B_r(t,T,\theta ) - \sigma _H \, \sigma _{\mu } \, \rho _{H,\mu } \, B_{\mu }(t,T,b)\big ) \, F_t \, {\textrm{d}}t \\&\quad + \, \sigma _H \, \rho _{r,H} \, F_t \, {\textrm{d}}{\hat{W}}_t^r + \sigma _H \, {\overline{\rho }}_{G,H} \, \sqrt{1-\rho _{r,H}^{2}} \, F_t \, {\textrm{d}}{\hat{W}}_t^G \\&\quad +\, \sigma _H \, \sqrt{(1-\rho _{r,H}^{2})(1-{\overline{\rho }}_{G,H}^{2})} \, F_t \, {\textrm{d}}{\hat{W}}_t^H. \end{aligned}$$

After integration,

$$\begin{aligned} F_t&= F_0 \cdot \exp \Bigg (\int _0^t r_s {\textrm{d}}s \, - \varepsilon \cdot t - \sigma _H \, \sigma _r \, \rho _{r,H} \int _0^t B_r(s,T,\theta ) {\textrm{d}}s \\&\quad -\, \sigma _H \, \sigma _{\mu } \, \rho _{H,\mu } \int _0^t B_{\mu }(s,T,b) {\textrm{d}}s \\&\quad - \, \frac{\sigma _H^2}{2} \cdot t + \sigma _H \, \rho _{r,H} \int _0^t {\textrm{d}}{\hat{W}}_s^r + \sigma _H \, {\overline{\rho }}_{G,H} \, \sqrt{1-\rho _{r,H}^2} \int _0^t {\textrm{d}}{\hat{W}}_s^G \\&\quad + \, \sigma _H \, \sqrt{(1-\rho _{r,H}^2)(1-{\overline{\rho }}_{G,H}^{2})} \int _0^t {\textrm{d}}{\hat{W}}_s^H\Bigg ), \end{aligned}$$

hence, the expression of \(\frac{F_T}{F_0}\) can be written as

$$\begin{aligned} \frac{F_T}{F_0}&= \frac{1}{P(0,T)} \cdot \exp \bigg ( - \varepsilon \cdot T - \sigma _H \, \sigma _r \, \rho _{r,H} \int _0^T B_r(s,T,\theta ) {\textrm{d}}s \\&\quad -\, \sigma _H \, \sigma _{\mu } \, \rho _{H,\mu } \int _0^T B_{\mu }(s,T,b) {\textrm{d}}s\\&\quad - \, \frac{\sigma _r^2}{2} \int _0^T B_r^2(s,T,\theta ) {\textrm{d}}s \\&\quad -\, \sigma _r \, \sigma _{\mu } \, \rho _{r,\mu } \int _0^T B_r(s,T,\theta ) \cdot B_{\mu }(s,T,b) {\textrm{d}}s - \frac{\sigma _H^2}{2} \cdot T \\&\quad + \, \int _0^T \, (\sigma _H \, \rho _{r,H} + \sigma _r \, B_r(s,T,\theta )){\textrm{d}}{\hat{W}}_s^r \\&\quad +\, \sigma _H \, {\overline{\rho }}_{G,H} \, \sqrt{1-\rho _{r,H}^2} \int _0^T {\textrm{d}}{\hat{W}}_s^G \\&\quad + \, \sigma _H \, \sqrt{(1-\rho _{r,H}^2)(1-{\overline{\rho }}_{G,H}^{2})} \int _0^T {\textrm{d}}{\hat{W}}_s^H\bigg ). \end{aligned}$$

From this end, we can compute \( {{\mathbb {E}}}^{{{\mathbb {Q}}}^{\mu }}\left[ \frac{F_T}{F_0}\right] = e^{{\hat{m}}_F+ \frac{{\hat{v}}_F}{2}}\) with

$$\begin{aligned} {\hat{m}}_F&= E\left[ \ln \left( \frac{F_T}{F_0}\right) \right] = \ln \left( \frac{1}{P(0,T)}\right) \, - \varepsilon \cdot T - \frac{\sigma _H^2}{2} \cdot T - \frac{\sigma _H \, \sigma _r \, \rho _{r,H}}{\theta } \, [T - B_r(0,T,\theta )] \\&\quad - \, \frac{\sigma _H \, \sigma _{\mu } \, \rho _{H,\mu }}{b} \, [T - B_{\mu }(0,T,b)]\\&\quad - \, \frac{\sigma _r \, \sigma _{\mu } \, \rho _{r,\mu }}{\theta \cdot b} \, [T + B_{r,\mu }(0,T,\theta +b) - B_r(0,T,\theta ) - B_{\mu }(0,T,b)]\\&\quad - \, \frac{\sigma _r^2}{2 \theta ^2} \, [T + B_r(0,T,2 \theta ) - 2 \, B_r(0,T,\theta )] \end{aligned}$$
$$\begin{aligned} {\hat{v}}_F&= V\left[ \ln \left( \frac{F_T}{F_0}\right) \right] = \sigma _H^2 \cdot T + 2 \cdot \frac{\sigma _H \, \sigma _r \, \rho _{r,H}}{\theta } \, [T - B_r(0, T, \theta )]\\&\quad +\, \frac{\sigma _r^2}{\theta ^2} \, [T + B_r(0,T,2 \theta ) - 2 \, B_r(0,T,\theta )], \end{aligned}$$

where \({\hat{m}}_F\) and \({\hat{v}}_F\) are, respectively, the expectation and the variance of \(\ln \left( \frac{F_T}{F_0}\right) \) under the forward-mortality measure.

Appendix D: Proof of Proposition 4

Referring to Sect. 4, the first and the third expectations can be solved explicitly as follows:

$$\begin{aligned} {{\mathbb {E}}}^{{\mathbb {Q}}}\Big [V_T \cdot e^{- \int _0^T r_s ds} \cdot e^{- \int _0^T \mu _x(s)ds}\Big ]&= \pi \cdot P \cdot \frac{p_x(0,T)}{{}_{T}p_{x}} \cdot \rho (0,T) \cdot \Big (P(0,T) \cdot (1+i)^T + \, \beta \cdot c_0^{T}\Big ) \\&\quad + (1-\pi ) \cdot P \cdot p_x(0,T) \cdot \rho ^{\prime }(0,T) \cdot e^{-\varepsilon \cdot T}, \end{aligned}$$

and

$$\begin{aligned} {{\mathbb {E}}}^{{\mathbb {Q}}}\Bigg [\frac{F_{j+1}}{F_0} \cdot e^{- \int _0^{j+1} r_s ds} \cdot e^{- \int _0^{j+1} \mu _x(s)ds}\Bigg ] = p_x(0,j+1) \cdot \rho ^{\prime }(0,j+1) \cdot e^{-\varepsilon \cdot (j+1)}. \end{aligned}$$

Whereas the expectation in the middle can be written as

$$\begin{aligned}{} & {} {{\mathbb {E}}}^{{\mathbb {Q}}}\Bigg [\frac{F_{j+1}}{F_0} \cdot e^{- \int _0^{j+1} r_s ds} \cdot e^{- \int _0^{j} \mu _x(s)ds}\Bigg ]\nonumber \\ {}{} & {} = {{\mathbb {E}}}^{{\mathbb {Q}}}\Bigg [\underbrace{\frac{F_j}{F_0} \cdot e^{- \int _0^j r_s ds} \cdot e^{- \int _0^{j} \mu _x(s)ds}}_{{{\textbf {I}}}} \, \cdot \, \underbrace{ \frac{F_{j+1}}{F_j} \cdot e^{- \int _j^{j+1} r_s ds}}_{{\textbf {II}}}\Bigg ]. \end{aligned}$$
(38)

We then develop the two processes I and II:

$$\begin{aligned} \textrm{I}&= \frac{F_j}{F_0} \cdot e^{- \int _0^j r_s ds} \cdot e^{- \int _0^{j} \mu _x(s)ds} \\&= \exp \Bigg ( - \varepsilon \cdot j - \frac{\sigma _H^2}{2} \cdot j - \mu _x(0) \cdot B_{\mu }(0,j,b) \\&\quad -\, b \int _0^j \xi _s \cdot B_{\mu }(s,j,b) {\textrm{d}}s + \int _0^j (\sigma _H \rho _{r,H} - \sigma _{\mu } \rho _{r,\mu } B_{\mu }(s,j,b)){\textrm{d}}W_s^r \\&\quad +\, \int _0^j (\sigma _H {\overline{\rho }}_{G,H} \sqrt{1-\rho _{r,H}^{2}} - \sigma _{\mu } {\overline{\rho }}_{G,\mu } \sqrt{1-\rho _{r,\mu }^{2}} B_{\mu }(s,j,b)){\textrm{d}}{\overline{W}}_s^G\\&\quad +\, \int _0^j (\sigma _H \sqrt{(1-\rho _{r,H}^{2})(1-{\overline{\rho }}_{G,H}^{2})} - \sigma _{\mu } \overline{{\overline{\rho }}}_{H,\mu } \sqrt{(1-\rho _{r,\mu }^{2})(1-{\overline{\rho }}_{G,\mu }^{2})} B_{\mu }(s,j,b)){\textrm{d}}\overline{{\overline{W}}}_s^H\\&\quad -\, \sigma _{\mu } \sqrt{(1-\rho _{r,\mu }^{2})(1-{\overline{\rho }}_{G,\mu }^{2})(1-\overline{{\overline{\rho }}}_{H,\mu }^{2})} \int _0^j B_{\mu }(s,j,b) {\textrm{d}}\overline{\overline{{\overline{W}}}}_s^{\mu }\Bigg ), \end{aligned}$$

and

$$\begin{aligned} {\textrm{II}}&= \frac{F_{j+1}}{F_j} \cdot e^{- \int _j^{j+1} r_s ds}\\ {}&= \exp \Bigg ( -\varepsilon - \frac{\sigma _H^2}{2} + \sigma _H \rho _{r,H} \int _j^{j+1} {\textrm{d}}W_s^r + \sigma _H {\overline{\rho }}_{G,H} \sqrt{1-\rho _{r,H}^{2}} \int _j^{j+1} {\textrm{d}}{\overline{W}}_s^G\\&\quad +\, \sigma _H \sqrt{(1-\rho _{r,H}^{2})(1-{\overline{\rho }}_{G,H}^{2})} \int _j^{j+1} {\textrm{d}}\overline{{\overline{W}}}_s^H \Bigg ). \end{aligned}$$

The independence between these two processes allows us to split Eq. (38) to

$$\begin{aligned}&{{\mathbb {E}}}^{{\mathbb {Q}}}\Bigg [\frac{F_j}{F_0} \cdot e^{- \int _0^j r_s ds} \cdot e^{- \int _0^{j} \mu _x(s)ds}\Bigg ] \, \cdot \, {{\mathbb {E}}}^{{\mathbb {Q}}}\Bigg [\frac{F_{j+1}}{F_j} \cdot e^{- \int _j^{j+1} r_s ds}\Bigg ]\\&\quad = p_x(0,j) \cdot \rho ^{\prime }(0,j) \cdot e^{-\varepsilon (j+1)}. \end{aligned}$$

Appendix E: Size of the loss in percentage of the premium—annual guarantee contract

See Tables 9 and 10.

Table 9 Size of loss in terms of the premium—annual guarantee without rebalancing
Table 10 Size of loss in terms of the premium—annual guarantee with rebalancing

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanna, V., Devolder, P. Valuation of mixed life insurance contracts under stochastic correlated mortality and interest rates. Eur. Actuar. J. 14, 63–98 (2024). https://doi.org/10.1007/s13385-023-00354-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13385-023-00354-4

Keywords

Navigation