Skip to main content
Log in

Novel Two-Stage Method of Preparing Graphitic Carbon Nitride Doped by Chlorine for Photocatalytic Hydrogen Evolution and Photocurrent Generation

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

In this work, graphitic carbon nitride doped by chlorine was prepared by a two-stage procedure for the first time. At the first stage, melamine was hydrothermally treated with glucose; at the second stage, the resulting precursor was calcined in a mixture with ammonium chloride. The obtained samples were studied using a set of physicochemical methods, such as X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy, and photoelectrochemical methods. All of the synthesized photocatalysts were tested in the reaction of photocatalytic hydrogen production from basic solutions of triethanolamine. The highest rates of hydrogen evolution and short-circuit current densities were obtained with a photocatalyst prepared by the calcination of a mixture consisting of 30% ammonium chloride and 70% melamine. The catalytic activity of this sample was 1332 μmol h–1 g–1, and it was higher than the catalytic activity of carbon nitride prepared by the calcination of melamine without pretreatment by a factor of 22.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Hosseini, S.E., Wahid, M.A., Jamil, M.M., Azli, A.A., and Misbah, M.F., Int. J. Energy Res., 2015, vol. 39, p. 1597.

    Article  CAS  Google Scholar 

  2. Abuadala, A. and Dincer, I., Int. J. Energy Res., 2012, vol. 36, p. 415.

    Article  CAS  Google Scholar 

  3. Arachchige, S.M. and Brewer, K.J., Encyclopedia of Inorganic and Bioinorganic Chemistry, Hoboken, NJ: Wiley, 2011. https://doi.org/10.1002/9781119951438.eibc0458

    Book  Google Scholar 

  4. Heterogeneous Catalysis at Nanoscale for Energy Applications, Tao, F., Schneider, W.F., and Kamat, P.V., Eds., Hoboken, NJ: Wiley, 2014, p. 326.

    Google Scholar 

  5. Acar, C., Dincer, I., and Zamfirescu, C., Int. J. Energy Res., 2014, vol. 38, p. 1903.

    Article  CAS  Google Scholar 

  6. Zhurenok, A.V., Markovskaya, D.V., Potapenko, K.O., Cherepanova, S.V., Saraev, A.A., Gerasimov, E.Yu., and Kozlova, E.A., Kinet. Catal., 2022, vol. 63, no. 3, p. 248.

    Article  CAS  Google Scholar 

  7. Markovskaya, D.V., Lyulyukin, M.N., Zhurenok, A.V., and Kozlova, E.A., Kinet. Catal., 2021, vol. 62, no. 4, p. 488.

    Article  CAS  Google Scholar 

  8. An, C.W., Liu, T., Zhang, D.F., and Yan, J.S., Kinet. Katal., 2020, vol. T. 61, no. 6, p. C. 818.

  9. Jain, A. and Ameta, C., Kinet. Katal., 2020, vol. 61, no. 2, p. 246.

    Article  Google Scholar 

  10. Krasnyakova, T.V., Yurchilo, S.A., Morenko, V.V., Nosolev, I.K., Glazunova, E.V., Khasbulatov, S.V., Verbenko, I.A., and Mitchenko, S.A., Kinet. Katal., 2020, vol. 61, no. 3, p. 359.

    Google Scholar 

  11. Salman, M., Guorui, N., Ayub, Y., Wang, S., Wang, L., Wang, X., Yan, W., Peng, S., and Ramakarishna, S., Appl. Catal. B: Environ., 2019, vol. 257, p. 117855.

    Article  Google Scholar 

  12. Koutsouroubi, E.D., Vamvasakis, I., Papadas, I.T., Drivas, C., Choulis, S., Kennou, S., and Armatas, G., ChemPlusChem, 2020, vol. 85, p. 1379.

    Article  CAS  PubMed  Google Scholar 

  13. Azharal, U., Bashir, M.S., Babar, M., Arif, M., Hassan, A., Riaz, M., Mujahid, R., Sagir, M., Suri, S.U.K., Show, P.L., Chang, J.-S., Khoo, K.S., and Mubashir, M., Chemosphere, 2022, p. 134792.

  14. Shcherban, N.D., Shvalagin, V.V., Korzhak, G.V., Yaremov, P.S., Skoryk, M.A., Sergiienko, S.A., and Kuchmiy, S.Ya., J. Mol. Struct., 2022, vol. 1250, p. 131741.

    Article  CAS  Google Scholar 

  15. Patel, S.B., Tripathi, A., and Vyas, A.P., Environ. Nanotechnol. Monitor. Manage., 2021, vol. 16, p. 100589.

    Article  CAS  Google Scholar 

  16. Lu, S., Shen, L., Li, X., Yu, B., Ding, J., Gao, P., and Zhang, H., J. Clean. Prod., 2022, vol. 378, p. 134589.

    Article  CAS  Google Scholar 

  17. Zhang, Y., Yuan, J., Ding, Y., Liu, B., Zhao, L., and Zhang, S., Ceram. Int., 2021, vol. 47, p. 31005.

    Article  CAS  Google Scholar 

  18. Phuc, N.V., An, D.T., Tri, N.N., Tran, H.H., Tran, T.T.H., Nguyen, P.H., and Vien, V.O., Appl. Mech. Mater., 2019, vol. 889, p. 24.

    Article  Google Scholar 

  19. Zhou, Y., Zhang, L., Liu, J., Fan, X., Wang, B., Wang, M., Ren, W., Wang, J., Li, M., and Shi, J., J. Mater. Chem. A, 2015, vol. 3, p. 3862.

    Article  CAS  Google Scholar 

  20. Nguyen, M.D., Nguyen, T.B., Thamilselvan, A., Nguyen, T.G., Kuncoro, E.P., and Doong, R.-A., J. Environ. Chem. Eng., 2022, vol. 10, p. 106905.

    Article  CAS  Google Scholar 

  21. Thorat, N., Yadav, A., Yadav, M., Gupta, S., Varma, R., Pillai, S., Fernandes, R., Patel, M., and Patel, N., J. Environ. Manage., 2019, vol. 247, p. 57.

    Article  CAS  PubMed  Google Scholar 

  22. Vasilchenko, D., Zhurenok, A., Saraev, A., Gerasimov, E., Cherepanova, S., Kovtunova, L., Tkachev, S., and Kozlova, E., Int. J. Hydrogen Energy, 2022, vol. 47, p. 11326.

    Article  CAS  Google Scholar 

  23. Sun, S., Li, J., Song, P., Cui, J., Yang, Q., Zheng, X., Yang, Z., and Liang, S., Appl. Surf. Sci., 2020, vol. 500, p. 143985.

    Article  CAS  Google Scholar 

  24. Zhurenok, A.V., Larina, T.V., Markovskaya, D.V., Cherepanova, S.V., Mel’gunova, E.A., and Kozlova, E.A., Mendeleev Commun., 2021, vol. 31, p. 157.

    Article  CAS  Google Scholar 

  25. Lu, Y., Wang, W., Cheng, H., Qiu, H., Sun, W., Fang, X., Zhu, J., and Zheng, Y., Int. J. Hydrogen Energy, 2022, vol. 47, p. 3733.

    Article  CAS  Google Scholar 

  26. Skuta, R., Matejka, V., Foniok, K., Smykalova, A., Cvejn, D., Gabor, R., Kormunda, M., Smetana, B., Novak, V., and Praus, P., Appl. Surf. Sci., 2021, vol. 552, p. 149490.

    Article  CAS  Google Scholar 

  27. Kesavan, G., Vinothkumar, V., Chen, S.-M., and Thangadurai, T.D., Appl. Surf. Sci., 2021, vol. 556, p. 149814.

    Article  CAS  Google Scholar 

  28. Zhang, Z., Cui, L., Zhang, Y., Klausen, L.H., Chen, M., Sun, D., Xu, S., Kang, S., and Shi, J., App. Catal. B: Environ., 2021, vol. 297, p. 120441.

    Article  CAS  Google Scholar 

  29. Dong, F., Zhao, Z., Xiong, T., Ni, Z., Zhang, W., Sun, Y., and Ho, W.K., ACS Appl. Mater. Int., 2013, vol. 5, p. 11392.

    Article  CAS  Google Scholar 

  30. Liu, H., Chen, D., Wang, Z., Jing, H., and Zhang, R., Appl. Catal. B: Environ., 2017, vol. 203, p. 300.

    Article  CAS  Google Scholar 

  31. Shvalagin, V., Kuchmiy, S., Skoryk, M., Bondarenko, M., and Khyzhun, O., Mater. Sci. Eng., 2021, vol. 271, p. 115304. https://doi.org/10.1016/j.mseb.2021.115304

  32. Wang, Z., Wang, Y., Xu, S., Jin, Y., Tang, Z., Xiao, G., and Su, H., Polym. Degrad. Stabil., 2021, vol. 190, p. 109638.

    Article  CAS  Google Scholar 

  33. Ren, X., Zhang, Y., Yang, L., and Chen, Z., Inorg. Chem. Commun., 2021, vol. 133, p. 108863.

    Article  CAS  Google Scholar 

  34. Zhurenok, A.V., Markovskaya, D.V., Gerasimov, E.Yu., Cherepanova, S.V., Bukhtiyarov, A.V., and Kozlova, E.A., RSC Adv., 2021, vol. 11, p. 37966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhurenok, A.V., Markovskaya, D.V., Gerasimov, E.Yu., Vokhmintsev, A.S., Weinstein, I.A., Prosvirin, I.P., Cherepanova, S.V., Bukhtiyarov, A.V., and Kozlova, E.A., Catalysts, 2021, vol. 11, p. 1340.

    Article  CAS  Google Scholar 

  36. Barr, T.L., J. Phys. Chem., 1978, vol. 82, p. 1801.

    Article  CAS  Google Scholar 

  37. Bernsmeier, D., Sachse, R., Bernicke, M., Schmack, R., Kettemann, F., Polte, J., and Kraehnert, R., J. Catal., 2019, vol. 369, p. 181.

    Article  CAS  Google Scholar 

  38. Golabiewska, A., Lisowski, W., Jarek, M., Nowaczyk, G., Zielinska-Jurek, A., and Zaleska, A., Appl. Surf. Sci., 2014, vol. 317, p. 1131.

    Article  CAS  Google Scholar 

  39. Smirnov, M.Yu., Vovk, E.I., Nartova, A.V., Kalinkin, A.V., and Bukhtiyarov, V.I., Kinet. Catal., 2018, vol. 59, no. 5, p. 653.

    Article  CAS  Google Scholar 

  40. Kozlova, E.A., Markovskaya, D.V., Cherepanova, S.V., Saraev, A.A., Gerasimov, E.Y., Perevalov, T.V., Kaichev, V.V., and Parmon, V.N., Int. J. Hydrogen Energy, 2014, vol. 39, p. 18758.

    Article  CAS  Google Scholar 

  41. Markovskaya, D.V., Kozlova, E.A., Cherepanova, S.V., Kolinko, P.A., Gerasimov, E.Y., and Parmon, V.N., ChemPhotoChem, 2017, vol. 1, p. 575.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to PhD E.A. Mel’gunova for the analysis of samples by low-temperature nitrogen adsorption.

Funding

This study was supported by the Council for Grants of the President of the Russian Federation for Support of Young Russian Scientists (agreement no. 075-15-2022-435 (MK-2133.2022.1.3)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Markovskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and notation: XRD, X-ray diffraction; TEM, transmission electron microscopy; SEM, scanning electron microscopy; XPS, X-ray photoelectron spectroscopy; CSR, coherent scattering region; BET, Brunauer–Emmett–Teller method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhurenok, A.V., Markovskaya, D.V., Potapenko, K.O. et al. Novel Two-Stage Method of Preparing Graphitic Carbon Nitride Doped by Chlorine for Photocatalytic Hydrogen Evolution and Photocurrent Generation. Kinet Catal 64, 250–259 (2023). https://doi.org/10.1134/S0023158423030114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423030114

Keywords:

Navigation