Skip to main content
Log in

Development and Study of a Carbon–Mineral Catalyst Based on Natural Clay and Tire Crumb for the Oxidative Decomposition of Nonionic Surfactants with Hydrogen Peroxide in Wastewater

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Samples of a carbon–mineral catalyst based on natural clay and tire crumb for the oxidative decomposition of nonionic surfactants (NSes) with hydrogen peroxide in wastewater have been developed and studied. The iron content in the samples has been varied in a range of 2.3–3.9 wt %. The effect of the pyrolysis temperature varied for the samples in a range of 350–800°C on changes in their textural characteristics, the number and type of acid sites on the surface, and the ζ-potential (zeta potential) of colloidal systems based on the synthesized samples has been studied. Using model solutions under steady-state and dynamic conditions, the effect of the pyrolysis temperature used for the samples on their catalytic properties in the oxidative decomposition of H2O2 and the neonol AF 9-10 NS with hydrogen peroxide has been studied. The best result in the oxidation of neonol AF 9-10 with hydrogen peroxide has been obtained in the presence of a carbon–mineral catalyst sample calcined at 650°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Knepper, T.P., Compr. Anal. Chem., 2003, vol. 40, p. 966.

    Google Scholar 

  2. Berge, A., Cladiere, M., Gasperi, J., Coursimault, A., Tassin, B., and Moilleron, R., Environ. Sci. Pollut. Res. Int., 2012, vol. 19, no. 9, p. 3798.

    Article  CAS  PubMed  Google Scholar 

  3. Chena, M., Tanga, R., and Fuc, G., J. Hazard. Mater., 2013, vols. 250–251, p. 115.

    Article  Google Scholar 

  4. Osvaldo, J.P. and Carbone, S., Toxicology, 2013, vol. 311, nos. 1–2, p. 41.

    Article  Google Scholar 

  5. Chanyshev, M.D. and Pustyl’nyak, V.O., Biomed. Khim., 2012, vol. 59, no. 3, p. 310.

    Article  Google Scholar 

  6. SanPiN (Sanitary Rules and Regulations) No. 4630-88.

  7. Vasil’eva, I.A., Gustyleva, L.K., Samchenko, N.A., Ukolov, A.I., and Savel’eva, E.I., Khim. Bezop., 2019, vol. 3, no. 2, p. 183.

    Google Scholar 

  8. Kholdeeva, O.A., Usp. Khim., 2006, vol. 75, no. 5, p. 460.

    Article  Google Scholar 

  9. Zazo, J.A., Environ. Sci. Technol., 2005, vol. 39, p. 9295.

    Article  CAS  PubMed  Google Scholar 

  10. Navalon, S., Alvaro, M., and Garcia, H., Appl. Catal. B: Environ., 2010, vol. 99, p. 1.

    Article  CAS  Google Scholar 

  11. Phu, N.H., Hoa, T.T.K., Tan, N.V., Thang, H.V., and Ha, Ph.L., Appl. Catal. B: Environ., 2001, vol. 34, no. 4, p. 267.

    Article  CAS  Google Scholar 

  12. Liu, Y. and Sun, D., J. Hazard. Mater., 2007, vol. 143, p. 448.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, T., You, H., and Chen, Q., J. Hazard. Mater., 2009, vol. 162, p. 860.

    Article  CAS  PubMed  Google Scholar 

  14. Quintanilla, P.A., Fraile, A.F., and Casas, J.A., J. Hazard. Mater., 2007, vol. 146, p. 582.

    Article  CAS  PubMed  Google Scholar 

  15. Tekbas, M., Yatmaz, H.C., and Bektas, N., Micropor. Mesopor. Mater., 2008, vol. 115, no. 3, p. 594.

    Article  CAS  Google Scholar 

  16. Macoveanu, M., Water Res., vol. 37, no. 5, p. 1154.

  17. Costa, R., Lelis, M., Oliveira, L., and Fabris, J., J. Hazard. Mater., 2006, vol. 129, p. 171.

    Article  CAS  PubMed  Google Scholar 

  18. Chumakov, A.A., Kotel’nikov, O.A., Slizhov, Yu.G., and Minakova, T.S., Vestn. Yuzhno-Ural. Gos. Univ., 2018, vol. 10, no. 4, p. 44.

    Google Scholar 

  19. Ryazantsev, A.A., Vestn. Buryat. Gos. Univ., 2016, p. 219.

  20. Pugachevskii, M.A., Mamontov, V.A., and Kuz’menko, A.P., Izv. Yugo-Zap. Gos. Univ., 2021, vol. 11, no. 1, p. 61.

    Google Scholar 

  21. Shadrina, O.A., in Sb. Materialov XVI Mezhdunarodnoi studencheskoi nauchno-prakticheskoi konferentsii (Materials of the XVI International Student Scientific and Practical Conference), 2017, p. 152.

  22. Kruzhalov, A.V., Romadenkina, S.B., Reshetov, V.A., and Shchipanova, M.V., Izv. Sarat. Univ. Nov. Ser. Ser.: Khim. Biol. Ekol., 2014, vol. 14, no. 2, p. 39.

    Google Scholar 

  23. Morozov, G.S., Savin, A.V., Bondyrev, M.L., Neklyudov, S.A., Breus, V.A., and Breus, I.P., Tekhnol. Nefti Gaza, 2012, no. 1, p. 3.

  24. Shykhaliev, K.S., Evraziiskii Soyuz Uchenykh, 2018, nos. 1–2, p. 71.

  25. Otchet po Gosudarstvennomu kontraktu no. 43/09-k ot 29.06.2009 FGUP “TsNIIgeolnerud” po teme: “Razvedka karbonatnykh i glinistykh porod Borshchevskogo kompleksnogo mestorozhdeniya dlya proizvodstva tsementa v Ferzikovskom raione Kaluzhskoi oblasti” (Report on the State Contract No. 43/09-k dated June 29, 2009 of the TsNIIgeolnerud institute on the topic: “Exploration of Carbonate and Clayey Rocks of the Borshchevskoye Complex Deposit for the Production of Cement in Ferzikovskii Raion of Kaluga Oblast”), 2010.

  26. Zul’fugarova, S.M., Askerov, A.G., Gasangulieva, N.M., Shakurova, N.V., Aleskerova, Z.F., Litvishkov, Yu.N., and Talyshinskii, R.M., NefteGazoKhimiya, 2017, vol. 58, no. 1, p. 54.

    Google Scholar 

  27. Gordina, N.E., Borisova, T.N., Klyagina, K.S., Astrakhantseva, I.A., Ilyin, A.A., and Rumyantsev, R.N., Membranes, 2022, vol. 12, p. 147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holmberg, K., Jönsson, B., Kronberg, B., and Lindman, B., Surfactants and Polymers in Aqueous Solution, New York: Wiley, 2007.

    Google Scholar 

  29. GOST (State Standard) R 56991-2016: Disinfectology and Disinfection Activities.

  30. Niwa, M. and Katada, N., The Chemical Record, 2013, vol. 13, no. 5, p. 432.

    Article  CAS  PubMed  Google Scholar 

  31. Kuvatova, R.Z., Travkina, O.S., and Kutepov, B.I., Katal. Prom-sti, 2020, vol. 20, no. 5, p. 328.

    CAS  Google Scholar 

  32. Katada, N., Tamagawa, H., and Niwa, M., Catal. Today, 2014, vol. 226, p. 37.

    Article  CAS  Google Scholar 

  33. Martins, R.C., Rezende, M.J.C., Nascimento, M.A.C., Nascimento, R.S.V., and Ribeiro, S.P.S., Polymers, 2020, vol. 12, p. 2781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shabiev, R.O. and Smolin, A.S., Analiz elektrokineticheskikh parametrov bumazhnoi massy: uchebnoe posobie (Analysis of Electrokinetic Parameters of Paper Pulp: Handbook), St. Petersburg: Gos. Tekh. Univ. Rast. Polim., 2012.

  35. Belen’kii, D.I., Al’manakh Sovrem. Metrol., 2016, no. 6, p. 27.

  36. Levchenko, L.M. and Golovizin, V.S., Zh. Strukt. Khim., 2010, vol. 51, no. 7, p. 92.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Prof. A.A. Il’in and Prof. N.E. Gordina (Ivanovo State University of Chemistry and Technology) for their assistance in analyzing the acidic properties of the samples by the ammonia TPD method and interpreting the results obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Fidchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Abbreviations and notation: NS, nonionic surfactant; OMS, organomineral sorbent; CMC, carbon–mineral catalyst; BET, Brunauer–Emmett–Teller method; TPD, temperature-programmed desorption.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fidchenko, M.M., Alekhina, M.B., Beznosyuk, A.N. et al. Development and Study of a Carbon–Mineral Catalyst Based on Natural Clay and Tire Crumb for the Oxidative Decomposition of Nonionic Surfactants with Hydrogen Peroxide in Wastewater. Kinet Catal 64, 260–269 (2023). https://doi.org/10.1134/S0023158423030035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423030035

Keywords:

Navigation