Skip to main content
Log in

Mechanism and Kinetic Laws of Reactions Determining Flame Propagation, Gas Explosion, and Detonation (Review)

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

It has been established that, contrary to previous ideas, chemical processes in flame propagation, explosion, and detonation of gases are chain reactions proceeding according to previously unknown laws of nonisothermal chain processes. The characteristic reaction times in deflagration and detonation in the combustion zone are less than a ten-thousandth and millionth of a second, respectively. The mechanisms and laws that determine these high rates and accelerations of reactions and their extremely strong temperature dependence were revealed. The critical role of atoms and radicals, formed in concentrations reaching tens of percent of the concentrations of the initial reagents, was shown using kinetic and spectroscopic methods. Efficient chemical methods for controlling all combustion modes were developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Semenov, N.N., Usp. Fiz. Nauk, 1940, vol. 23, no. 1, p. 251.

    Article  CAS  Google Scholar 

  2. Semenov, N.N., Razvitie teorii tsepnykh reaktsii i teplovogo vosplameneniya (Development of the Theory of Chain Reactions and Thermal Ignition), Moscow: Izd. Znanie, 1969.

  3. Semenov, N.N., Izbrannye trudy (Selected Works), Moscow: Nauka, 2005, vol. 3.

  4. Lewis, B. and Von Elbe, G., Combustion, Explosions, and Flame in Gases, New York: Acad. Press, 1987.

    Google Scholar 

  5. Baulch, D.L., Bowman, C.T., Cobos, C.J., Cox, R.A., Just, T., Kerr, J.A., Pilling, M.J., Stoker, D., Troe, J., Tsang, W., Walker, R.W., and Warnatz, J., J. Phys. Chem. Ref. Data, 2005, vol. 34, no. 3, p. 757.

    Article  CAS  Google Scholar 

  6. Srinivasan, N.K., Michael, J.V., Harding, L.B., and Klipperstain, S.J., Combust. Flame, 2007, vol. 149, nos. 1–2, p. 104.

    Article  CAS  Google Scholar 

  7. Zel’dovich, Ya.B., Barenblat, G.I., Librovich, V.B., and Makhviladze, G.M., Matematicheskaya teoriya goreniya (Mathematical Theory of Combustion), Moscow: Nauka, 1980.

  8. Williams, F.A., Combustion Theory, Westview Press, 1985.

    Google Scholar 

  9. Combustion, Khimicheskaya entsiklopediya (Chemical Encyclopedia), Moscow: Sov. Entsiklopediya, 1988, vol. 1, p. 595.

  10. Combustion, Fizicheskaya entsiklopediya (Physical Encyclopedia), Moscow: Sov. Entsiklopediya, 1988, p. 515.

  11. Combustion, Bol’shoi entsiklopedicheskii slovar’ “Fizika” (Large Encyclopedic Dictionary), Moscow: Izd. Bol’shaya Rossiiskaya entsiklopediya, 1998, p. 134.

  12. Merzhanov, A.G., Nonequilibrium theory of flame propagation, Prog. Astron. Aeronaut., 1997, vol. 173, p. 37.

    CAS  Google Scholar 

  13. Frank-Kamenetskii, D.A., Osnovy makrokinetiki, diffuziya, teploperedacha v khimicheskoi kinetike (Fundamentals of Macrokinetics, Diffusion, Heat Transfer in Chemical Kinetics), Dolgoprudnyi: Intellekt, 2008.

  14. Kukin, P.P., Yushin, V.V., and Emel’yanov, S.G., Teoriya goreniya i vzryva (Theory of Combustion and Explosion), Moscow: Yurait, 2012.

  15. Palesskii, F.S., Fursenko, R.V., and Minaev, S.S., Fiz. Goreniya Vzryva, 2014, vol. 50, no. 6, p. 3.

    Google Scholar 

  16. Frolov, S.M., Shamshin, I.V., Dubrovskii, F.V., and Medvedev, S.N., in Proc. Int. Conf. on Transient Combustion and Detonation, Moscow: Torus press, 2014, p. 204.

  17. Kogan, I. and Sivashinsky, G., Modeling of deflagration-to-detonation transition with ignition temperature kinetics, in Proc. Int. Conf. on Transient Combustion and Detonation Phenomena, Moscow, 2014, p. 163.

  18. Lewis, B. and Von Elbe, G., Combustion, Flames and Explosions of Gases, New York: Acad. Press, 1951.

    Google Scholar 

  19. Dubrovskii, A.V., Ivanov, V.S., Zangiev, A.E., and Frolov, S.M., Khim. Fiz., 2016, vol. 35, no. 6, p. 49.

    Google Scholar 

  20. Warnatz, J., Maas, U., and Dibble, R.W., Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, Berlin: Springer, 2001.

    Book  Google Scholar 

  21. Babkin, V.S. and Senachin, P.K., Protsessy goreniya gazov v ogranichennykh ob’’emakh (Gas Combustion Processes in Confined Volumes), Barnaul: Izd. Alt. Gos. Tekh. Univ., 2017.

  22. Chung K. Law, Combustion Physics, Cambridge, NY: Cambridge Univ. Press, 2006.

    Google Scholar 

  23. Azatyan, V.V., Usp. Khim., 1999, vol. 62, no. 12, p. 1122.

    Google Scholar 

  24. Azatyan, V.V., Vagner, G.G., and Vedeshkin, G.K., Zh. Fiz. Khim., 2004, vol. 78, no. 6, p. 1036.

    CAS  Google Scholar 

  25. Azatyan, V.V., Pavlov, V.A., and Shatalov, O.P., Kinet. Katal., 2005, vol. 46, no. 6, p. 835.

    Article  Google Scholar 

  26. Azatyan, V.V., Zh. Fiz. Khim., 2011, vol. 85, no. 8, p. 1405.

    Google Scholar 

  27. Azatyan, V.V., Bolod’yan, I.A., Shebeko, Yu.N., and Navtsen’ya, V.Yu., Kinet. Katal., 2003, vol. 27, no. 3, p. 449.

    Google Scholar 

  28. Petrova, L.D., Azatyan, V.V., Baratov, A.N., Vogman, L.P., and Makeev, V.N., in Sb. Gorenie i vzryv (Combustion and Explosion), Moscow: Nauka, 1977, p. 626.

  29. Azatyan, V.V., Bakulev, V.I., Kalkanov, V.A., Romanenko, N.T., Kharlamov, A.V., and Shavard, A.A., RF Patent 1835139, 1992.

  30. Azatyan, V.V., Tsepnye reaktsii v gorenii, vzryve i detonatsii gazov (Chain Reactions in Combustion, Explosion and Detonation of Gases), Moscow: Izd. Ross. Akad. Nauk, 2020.

  31. Kondrat’ev, V.N. and Nikitin, E.E., Khimicheskie protsessy v gazakh (Chemical Processes in Gases), Moscow: Nauka, 1981.

  32. Azatyan, V.V., Kinet. Katal., 1976, vol. 17, no. 2, p. 533.

    CAS  Google Scholar 

  33. Azatyan, V.V. and Shavard, A.A., Izv. Akad. Nauk SSSR, Ser. Khim., 1977, vol. 42, no. 11, p. 2460.

    Google Scholar 

  34. Azatyan, V.V., Kinet. Katal., 2015, vol. 56, no. 1, p. 3.

    Article  Google Scholar 

  35. Azatyan, V.V., Fiz. Goreniya Vzryva, 1979, vol. 15, no. 5, p. 62.

    CAS  Google Scholar 

  36. Azatyan, V.V., Dokl. Akad. Nauk, 2020, vol. 495, p. 59. https://doi.org/10.31857/S2686953520060047

    Article  Google Scholar 

  37. Gershenzon, Yu.M., Glebova, O.N., and Azatyan, V.V., Dokl. Akad. Nauk SSSR, 1966, vol. 168, no. 4, p. 851.

    CAS  Google Scholar 

  38. Prokopenko, V.M. and Azatyan, V.V., Zh. Fiz. Khim., 2018, vol. 92, no. 1, p. 55. https://doi.org/10.7868/S004445371801020X

    Article  Google Scholar 

  39. Korobeinichev, O.P., Rybitskaya, I.V., Shmakov, A.G., Chernov, A.A., Bolshova, T.A., and Shvartsberg, V.M., in Proceedings of the Combustion Institute, 2009, vol. 32, p. 2591.

    Article  CAS  Google Scholar 

  40. Azatyan, V.V., Vartanyan, A.A., Kalkanov, V.A., and Shavard, A.A., Khim. Fiz., 1989, vol. 8, no. 11, p. 1290.

    CAS  Google Scholar 

  41. Explosion, Bol’shaya Rossiiskaya entsiklopediya (Large Russian Encylopedia), Moscow: Bol’shaya Rossiiskaya entsiklopediya, 2006, vol. 5, p. 242.

  42. Azatyan, V.V., Naboko, I.M., Petukhov, V.A., Gusev, P., Fortov, V.G., and Solntsev, O.V., Dokl. Ross. Akad. Nauk, 2004, vol. 394, no. 1, p. 61.

    Google Scholar 

  43. Lewis, B. and Friauf, J.B., J. Am. Chem. Soc., 1930, vol. 52, p. 3905.

    Article  CAS  Google Scholar 

  44. Semenov, N.N., Tsepnye reaktsii (Chain Reactions), Leningrad: Goskhimtekhizdat, 1934.

  45. Zel’dovich, Ya.B., Zh. Eksp. Teor. Fiz., 1940, vol. 10, p. 524.

    Google Scholar 

  46. Zel’dovich, Ya.B., Izbrannye trudy (Selected Works), Moscow: Nauka, 1984.

  47. Von Neumann, J., OSRD Report 549, 1942.

  48. Doring, W., Ann. Phys., 1943, vol. 43, p. 421.

    Article  Google Scholar 

  49. Sokolik, A.S., Samovosplamenenie, plamya i detonatsiya v gazakh (Self-Combustion, Flame and Detonation in Gases), Moscow: Izd. Akad. Nauk SSSR, 1960.

  50. Aldushin, A.P., Prog. Astronaut. Aeronaut., 1997, vol. 173, p. 95.

    CAS  Google Scholar 

  51. Nettleton, M., Gaseous Detonations, Dordrecht: Springer, 1987.

    Book  Google Scholar 

  52. Mitrofanov, V.V., Detonatsiya gomogennykh i geterogennykh sistem (Detonation of Homogeneous and Heterogeneous Systems), Novosibirsk: Izd. Sib. Otd. Ross. Akad. Nauk, 2003.

  53. Azatyan, V.V., Prokopenko, V.M., Abramov, S.K., and Smirnov, N.N., Dokl. Ross. Akad. Nauk, 2017, vol. 472, no. 3, p. 295.

    Google Scholar 

  54. Gel’fand, B.E., Fiz. Goreniya Vzryva, 2002, vol. 38, no. 5, p. 101.

    Google Scholar 

  55. Azatyan, V.V., Kinet. Katal., 1996, vol. 37, no. 4, p. 512.

    Google Scholar 

  56. Azatyan, V.V., Baklanov, D.I., Gvozdeva, L.G., Logutov, Yu.P., Merzhanov, A.G., and Shcherbak, N.B., Dokl. Ross. Akad. Nauk, 2001, vol. 376, no. 1, p. 55.

    CAS  Google Scholar 

  57. Azatyan, V.V., Abramov, S.K., Prokopenko, V.M., Ratnikov, V.I., and Tunik, Yu.V., Kinet. Katal., 2013, vol. 54, no. 5, p. 553.

    Google Scholar 

  58. Zel’dovich, Ya.B. and Kompaneets, A.S., Teoriya detonatsii (Theory of Detonation), Moscow: Gostekhizdat, 1955.

  59. Azatyan, V.V., Alymov, M.I., Prokopenko, V.M., Abramov, S.K., and Kazanskii, V.B., Kinet. Katal., 2022, vol. 63, no. 4, p. 484.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science of Higher Education of the Russian Federation (agreement no. 075-15-2020-806 of September 29, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Azatyan.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by L. Smolina

Abbreviations and notation: CCs are the chain carriers; CTE is the chain thermal explosion; SWs, shock waves; EPR, electronic paramagnetic resonance; М, the third particle that takes the recombination energy from НО2; q+, heat release rate; q, heat removal rate; Т, temperature; W, reaction rate; \(Q\), thermal effect; S, reaction chamber surface area; V, reaction chamber volume; \({{\alpha \;}}\), heat transfer coefficient; T0, reactor wall temperature; В, О2; t, time; t0, initial moment of time; tr, reaction time; n, concentration of H (CC) atoms; n0, CC concentration at t0; \({{{{\omega }}}_{0}}\), rate of reaction (0); f and \(g\), rates of reactions (I) and (IV) at unit CC concentrations; k, rate constant of the intermolecular reaction; ko, preexponential factor of the rate constant k; k1, rate constant of the chain branching reaction (limiting stage); \(k_{1}^{{\text{o}}}\), preexponential factor of the rate constant k1; С0 and С, initial and current reagent concentrations, respectively; ЕR and ЕМ, activation energies of the reactions of the initial molecules with free atoms and with one another, respectively; Ebr, activation energy of chain branching; Е, effective activation energy; and R, gas constant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azatyan, V.V. Mechanism and Kinetic Laws of Reactions Determining Flame Propagation, Gas Explosion, and Detonation (Review). Kinet Catal 64, 221–234 (2023). https://doi.org/10.1134/S0023158423030023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423030023

Keywords:

Navigation