Skip to main content
Log in

Kinetic Investigation on Selective CO2 Hydrogenation to Formic Acid over Rhodium Hydrotalcite (Rh-HT) Catalyst

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A heterogeneous catalyst, rhodium hydrotalcite (Rh-HT), was synthesized, characterized, and explored for kinetic studies for the hydrogenation of CO2 to formic acid using molecular hydrogen in an autoclave. The catalyst was efficient for the selective formation of formic acid at a moderate temperature with up to 5 catalytic cycles without any significant loss in catalytic activity. The detailed kinetic investigations were performed by determining the rate of formic acid formation as a function of time, catalyst amount, total pressure, partial pressure of CO2, partial pressure of H2, reaction volume, v/v ratio of the mixed solvent of methanol and water, agitation speed, and temperature in a wide range of variation. The rates were found to be dependent on all these parameters. The formic acid formation rate followed the first-order kinetics with respect to the partial pressures of CO2 and H2, and catalyst amount. The best reaction conditions obtained from the kinetic parametric optimisation were, 50 bar total pressure (1/1 p/p, CO2 and H2); 60°C temperature; a mixture of methanol:water solvent (5/1 v/v, 60 mL); 24 h time; and 500 rpm agitation speed to get a TON of 15840 for formic acid with no additional base. The thermodynamic performance of the heterogeneous catalyst Rh-HT was appreciably associated with highly negative entropy. The performance of the catalyst was effectively enhanced by the mixture of water and methanol as a solvent. The mechanistic routes for CO2 hydrogenation to formic acid are proposed and discussed based on the kinetic and experimental observations involving the role of the molecular effect of water used in the solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Navarro-Jaén, S., Virginie, M., Bonin, J., Robert, M., Wojcieszak, R., and Khodakov, A.Y., Nat. Rev. Chem., 2021, vol. 5, p. 564.

    Article  PubMed  Google Scholar 

  2. Saravanan, A., Senthil Kumar, P., Dai-Viet, N.V., Jeevanantham, S., Bhuvaneswari, V., Narayanan, V.A., Yaashikaa, P.R., Swetha, S. and Reshma, B., Chem. Eng. Sci., 2021, vol. 236, p. 116515.

    Article  CAS  Google Scholar 

  3. Osman, A.I., Hefny, M., Maksoud, M.I.A.A., Elgarahy, A.M., and Rooney, D.W., Environ. Chem. Lett., 2021, vol. 19, p. 797.

    Article  CAS  Google Scholar 

  4. Hepburn, C., Adlen, E., Beddington, J., Carter, E.A., Fuss, S., Dowell, N.M., Minx, J.C., Smith, P., and Williams, C.K., Nature, 2019, vol. 575, p. 87.

    Article  CAS  PubMed  Google Scholar 

  5. Elgrishi, N., Chambers, M.B., Wang, X., and Fontecave, M., Chem. Soc. Rev., 2017, vol. 46, p. 761.

    Article  CAS  PubMed  Google Scholar 

  6. Perazio, A., Lowe, G., Gobetto, R., Bonin, J., and Robert, M., Coord. Chem. Rev., 2021, vol. 443, p. 214018.

    Article  CAS  Google Scholar 

  7. Koizumi, H., Takeuchi, K., Matsumoto, K., Fukaya, N., Sato, K., Uchida, M., Matsumoto, S., Hamura, S., and Choi, J.-C., Commun. Chem., 2021, vol. 4, p. 66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, W., Wang, S., Ma, X., and Gong, J., Chem. Soc. Rev., 2011, vol. 40, p. 3703.

    Article  CAS  PubMed  Google Scholar 

  9. Gorbunov, D.N., Nenasheva, M.V., Terenina, M.V., Kardasheva, Y.S., Kardashev, S.V., Naranov, E.R., Bugaev, A.L., Soldatov, A.V., Maximov, A.L., and Karakhanov, E.A., Petrol. Chem., 2022, vol. 62, p. 1.

    Article  CAS  Google Scholar 

  10. Siek, S., Burks, D.B., Gerlach, D.L., Liang, G., Tesh, J.M., Thompson, C.R., Qu, F., Shankwitz, J.E., Vasquez, R.M., Chambers, N., Szulczewski, G.J., Grotjahn, D.B., Webster, C.E., and Papish, E.T., Organometallics, 2017, vol. 36, p. 1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bizzari, S.N. and Blagoev, M., CEH Marketing Research Report: Formic Acid. Chemical Economics Handbook, SRI Consulting, 2020. http://www.sriconsulting.com/CEH/Public/Reports/659.2000/. Accessed July 2011.

  12. Navlani-García, M., Mori, K., Salinas-Torres, D., Kuwahara, Y., and Yamashita, H., Front. Mater., 2019, vol. 6, p. 44.

    Article  Google Scholar 

  13. Eppinger, J. and Huang, K.-W., ACS Energy Lett., 2017, vol. 2, p. 188.

    Article  CAS  Google Scholar 

  14. Agrawal, K., Roldan, A., Kishore, N., and Logsdail, A.J., Catal. Today, 2022, vols. 384–386, p. 197.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jeong, B., Jeon, H., Toyoshima, R., Crumlin, E.J., Kondoh, H., Mun, B.S., and Lee, J., J. Phys. Chem. C, 2018, vol. 122, p. 2064.

    Article  CAS  Google Scholar 

  16. Lu, C., Waste to Renewable Biohydrogen, Academic Press, 2021, vol. 1, ch. 9, p. 201.

    Google Scholar 

  17. Mao, L., Jackson, L., and Jackson, T., J. Power Sources, 2017, vol. 362, p. 39.

    Article  CAS  Google Scholar 

  18. Navlani-García, M., Mori, K., Kuwahara, Y., and Yamashita, H., NPG Asia Mater., 2018, vol. 10, p. 277.

    Article  Google Scholar 

  19. Zhang, Z.W., Zheng, W.T., and Jiang, Q., Int. J. Hydrogen Energy, 2012, vol. 37, p. 5090.

    Article  CAS  Google Scholar 

  20. Liu, W., Zhao, Y.H., Li, Y., Jiang, Q., and Lavernia, E.J., J. Phys. Chem. C, 2009, vol. 113, p. 2028.

    Article  CAS  Google Scholar 

  21. Fellay, C., Dyson, P.J., and Laurenczy, G., Angew. Chem. Int. Ed., 2008, vol. 47, p. 3966.

    Article  CAS  Google Scholar 

  22. Rivard, E., Trudeau, M., and Zaghib, K., Materials (Basel), 2019, vol. 12, p. 1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nielsen, M., Kammer, A., Cozzula, D., Junge, H., Gladiali, S., and Beller, M., Angew. Chem. Int. Ed., 2011, vol. 50, p. 9593.

    Article  CAS  Google Scholar 

  24. Voẞ, D., Kahl, M., and Albert, J., ACS Sustain. Chem. Eng., 2020, vol. 8, p. 10444.

    Article  Google Scholar 

  25. Valentini, F., Kozell, V., Petrucci, C., Marrocchi, A., Gu, Y., Gelman, D., and Vaccaro, L., Energy Environ. Sci., 2019, vol. 12, p. 2646.

    Article  CAS  Google Scholar 

  26. Enthaler, S., Langermann, J.V., and Schmidt, T., Energy Environ. Sci., 2010, vol. 3, p. 1207.

    Article  CAS  Google Scholar 

  27. Waldie, K.M., Ostericher, A.L., Reineke, M.H., Sasayama, A.F., and Kubiak, C.P., ACS Catal., 2018, vol. 8, p. 1313.

    Article  CAS  Google Scholar 

  28. Jeletic, M.S., Hulley, E., Helm, M.L., Mock, M.T., Appel, A.M., Wiedner, E.S., and Linehan, J.C., ACS Catal., 2018, vol. 7, p. 6008.

    Article  Google Scholar 

  29. Gassner, F. and Leiter, W., J. Chem. Soc. Chem. Commun., 1993, p. 1465.

  30. Graf, E. and Leiter, W., J. Chem. Soc. Chem. Commun., 1992, p. 623.

  31. Darensbourg, D.J. and Ovalles, C., J. Am. Chem. Soc., 1984, vol. 106, p. 3750.

    Article  CAS  Google Scholar 

  32. Himeda, Y., Green Chem., 2009, vol. 11, p. 2018.

    Article  CAS  Google Scholar 

  33. Hyde, J.R., Walsh, B., Singh, J., and Poliakoff, M., Green Chem., 2009, vol. 7, p. 357.

    Article  Google Scholar 

  34. Fan, Li., Sakaiya, Y., and Fujimoto, K., App. Catal. A. Gen., 1999, vol. 180, p. L11.

    Article  CAS  Google Scholar 

  35. Zhang, J., Wang, H., Li, Z., and Wang, C., Trans. Metal Chem., 1995, vol. 20, p. 118.

    CAS  Google Scholar 

  36. Oshima, K., Shinagawa, T., Nogami, Y., Manabe, R., Ogo, S., and Sekine, Y., Catal. Today, 2014, vol. 232, p. 27.

    Article  CAS  Google Scholar 

  37. Himeda, Y., CO 2 Hydrogenation Catalysis, 2021.

  38. Behr, A. and Nowakowski, K., Advances in Inorganic Chemistry, 2014, ch. 7, vol. 66, p. 223.

  39. Jessop, P.G., Ikariya, T., and Noyori, R., Chem. Rev., 1995, vol. 95, pp. 259–272.

    Article  CAS  Google Scholar 

  40. Jessop, P.G., The Handbook of Homogenous Hydrogenation, de Vries, J.G. and Elsevier, C.J., Eds., Weinheim: Wiley-VCH, 2007, vol. 1, p. 490.

  41. Preti, D., Squarcialupi, S., and Fachinetti, G., Angew. Chem. Int. Ed., 2010, vol. 49, p. 2581.

    Article  CAS  Google Scholar 

  42. Sun, R., Liao, Y., Bai, S.-T., Zheng, M., Zhou, C., Zhang, T., and Sels, B.F., Energy Environ. Sci., 2021, vol. 14, p. 1247.

    Article  CAS  Google Scholar 

  43. Ye, R.-P., Ding, J., Gong, W., Argyle, M.D., Zhong, Q., Wang, Y., Russell, C.K., Xu, Z., Russell, A.G., Li, Q., Fan, M., and Yao, Y.-G., Nat. Commun., 2019, vol. 10, p. 1.

    Article  Google Scholar 

  44. Whang, H.S., Lim, J., Choi, M.S., Lee, J., and Lee, H., BMC Chem. Eng., 2019, vol. 9, p. 1.

    Google Scholar 

  45. Maru, M.S., Patel, P., Khan, N.H., and Shukla, R.S., Curr. Catal., 2020, vol. 9, p. 59.

    Article  CAS  Google Scholar 

  46. Maru, M.S., Ram, S., Shukla, R.S., and Noor-ul, H.K., Mol. Catal., 2018, vol. 446, p. 23.

    Article  CAS  Google Scholar 

  47. Patel, P., Nandi, S., Maru, M.S., Kureshy, R.I., and Noor-ul, H.K., J. CO 2 Util., 2018, vol. 25, p. 310.

  48. Maru, M.S., Ram, S., Adwani, J.H., and Shukla, R.S., ChemistrySelect, 2017, vol. 2, p. 3823.

    Article  CAS  Google Scholar 

  49. Sudheesh, N., Chaturvedi, A.K., and Shukla, R.S., Appl. Catal. A. Gen., 2011, vol. 409, p. 99.

    Article  Google Scholar 

  50. Sudheesh, N., Sharma, S.K., Shukla, R.S., and Jasra, R.V., J. Mol. Catal. A. Chem., 2010, vol. 316, p. 23.

    Article  CAS  Google Scholar 

  51. Sudheesh, N., Sharma, S.K., Shukla, R.S., and Jasra, R.V., J. Mol. Catal. A. Chem., 2008, vol. 296, p. 61.

    Article  CAS  Google Scholar 

  52. Srivastava, V.K., Sharma, S.K., Shukla, R.S., Subrahmanyam, N., and Jasra, R.V., Ind. Eng. Chem. Res., 2005, vol. 44, p. 1764.

    Article  CAS  Google Scholar 

  53. Maru, M.S., Ram, S., Noor-ul, H.K., and Shukla, R.S., Mater. Adv., 2021, vol. 2, p. 5443.

    Article  CAS  Google Scholar 

  54. Srivastava, V., Catal. Lett., 2021, vol. 151, pp. 3704–3720.

    Article  CAS  Google Scholar 

  55. Mitchell, C.E., Terranova, U., Alshibane, I., Morgan, D.J., Davies, T.E., He, Q., Hargreaves, J.S.J., Sankar, M., and de Leeuw, N.H., New J. Chem., 2019, vol. 43, pp. 13985–13997.

    Article  CAS  Google Scholar 

  56. Liu, Q., Yang, X., Li, L., Miao, S., Li, Y., Li, Y., Wang, X., Huang, Y., and Zhang, T., Nat. Commun., 2017, vol. 8, p. 1407.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sharma, S.K., Parikh, P.A., and Jasra, R.V., J. Mol. Catal. A: Chem., 2010, vol. 317, p. 27.

    Article  CAS  Google Scholar 

  58. Sharma, S.K., Srivastava, V.K., Shukla, R.S., Parikh, P.A., and Jasra, R.V., New J. Chem., 2007, vol. 31, p. 277.

    Article  CAS  Google Scholar 

  59. Jasra, R.V., Srivastava, V.K., Shukla, R.S., Bajaj, H.C., and Bhatt, S.D., US Patent 7294745 B2, 2007.

  60. Sharma, D. and Sakthivel, A., J. Nanosci. Nanotechnol., 2018, vol. 18, p. 381.

    Article  CAS  PubMed  Google Scholar 

  61. Motokura, K., Hashimoto, N., Hara, T., Mitsudome, T., Mizugaki, T., Jitsukawa, K., and Kaneda, K., Green Chem., 2011, vol. 13, p. 2416.

    Article  CAS  Google Scholar 

  62. Gunasekar, G.H., Park, K., Jung, K.-D., and Yoon, S., Inorg. Chem. Front., 2016, vol. 3, p. 882.

    Article  CAS  Google Scholar 

  63. Wiyantoko, B., Kurniawati, P., Purbaningtias, T.E., and Fatimah, Is., Procedia Chem., 2015, vol. 17, p. 21.

    Article  CAS  Google Scholar 

  64. Jing, C., Zhang, Q., Liu, X., Chen, Y., Wang, X., Xia, L., Zeng, H., Zhang, D.W.W., and Dong, F., RSC Adv., 2019, vol. 9, p. 9604.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Constantino, V.R.L. and Pinnavaia, T.J., J. Inorg. Chem., 1995, vol. 34, no. 4, p. 883.

    Article  CAS  Google Scholar 

  66. Kim, Y., Kang, S., Kang, D., Lee, K.R., Song, C.K., Sung, J., Kim, J.S., Lee, H., Park, J., and Yi, J., Angew. Chem. Int. Ed., 2021, vol. 60, p. 25411.

    Article  CAS  Google Scholar 

  67. Samal, A.K., Zhu, H., Harb, M., Sangaru, S.S., Anjum, D.H., Hedhili, M.N., Saih, Y., and Basset, J.-M., Catal. Sci. Technol., 2017, vol. 7, p. 581.

    Article  CAS  Google Scholar 

  68. Gallaher, G., Goodwin, J.G., Huang, C.S., and Houalla, M., J. Catal., 1991, vol. 127, p. 719.

    Article  CAS  Google Scholar 

  69. Fierro, J.L.G., Palacios, J.M., and Tomas, F., Surf. Interface Anal., 1988, vol. 13, p. 25.

    Article  CAS  Google Scholar 

  70. László, B., Baán, K., Varga, E., Oszkó, A., Erdohelyi, A., Kónya, Z., and Kiss, J., Appl. Catal. B: Environ., 2016, vol. 199, p. 473.

    Article  Google Scholar 

  71. Wang, Y., Nie, Y.G., Pan, J.S., Pan, L.K., Sun, Z., Wang, L.L., and Sun, C.Q., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 2177.

    Article  CAS  PubMed  Google Scholar 

  72. Iordan, A., Zaki, M.I., Kappenstein, C., and Geron, C., Phys. Chem. Chem. Phys., 2003, vol. 5, p. 1708.

    Article  CAS  Google Scholar 

  73. Zhang, T., Zhao, B., Chen, Q., Peng, X., Yang, D., and Qiu, F., Appl. Biol. Chem., 2019, vol. 62, p. 12.

    Article  Google Scholar 

  74. Wu, L.Q., Li, Y.C., Li, S.Q., Li, Z.Z., Tang, G.D., Qi, W.H., Xue, L.C., Ge, X.S. and Ding, L.L., AIP Adv., 2015, vol. 5, p. 097210.

    Article  Google Scholar 

  75. Lucrédio, A.F., Filho, G.T., and Assaf, E.M., Appl. Surf. Sci., 2009, vol. 255, p. 5851.

    Article  Google Scholar 

  76. Stephen, H. and Stephen, T., Solubilities of Inorganic and Organic Compounds, New York: Pergamon Press, 1963, vol. 1, pt. 1–2.

  77. Sudheesh, N., Parmar, J.N., and Shukla, R.S., Appl. Catal. A., 2012, vol. 124, p. 415.

    Google Scholar 

  78. Ansari, M.B., Shukla, R.S., Mo, Y.-H., and Park, S.-E., Chem. Eng. J. Adv., 2021, vol. 6, p. 100102.

    Article  CAS  Google Scholar 

  79. Tsai, J.C. and Nicholas, K.M., J. Am. Chem. Soc., 1992, vol. 114, p. 5117.

    Article  CAS  Google Scholar 

Download references

Funding

CSMCRI communication no. IMC 03, CSIR-CSMCRI–56/2022. The authors thank the Council of Scientific and Industrial Research (CSIR), New Delhi, India for the financial support through the Network Project on Clean Coal Technology (Tap Coal, CSC 0102) and the Analytical Division and Central Instrumentation Facility of CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, for providing instrumental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minaxi S. Maru.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations and notation: HT, hydrotalcite; Rh-HT, rhodium hydrotalcite; RRh-HT, recycled rhodium hydrotalcite catalyst; RWGS, reverse water gas shift; PXRD, powder X-ray diffraction; FT-IR, Fourier-transform infrared spectroscopy; BET, Brunauer–Emmett–Teller method; XPS, X-ray photoelectron spectroscopy; ICP, inductive coupled plasma; HPLC, high-performance liquid chromatography; FE-SEM/EDX, field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy; TON, number of moles of product formed per mole of rhodium in catalyst.

APPENDIX

APPENDIX

Fig. A-1.
figure 12

HPLC diagrams of formic acid formed by the hydrogenation of CO2 (a) and standard formic acid solution (b).

Fig. A-2.
figure 13

SEM-EDX graph of Rh-HT catalyst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maru, M., Ram, S. & Shukla, R.S. Kinetic Investigation on Selective CO2 Hydrogenation to Formic Acid over Rhodium Hydrotalcite (Rh-HT) Catalyst. Kinet Catal 64, 276–293 (2023). https://doi.org/10.1134/S0023158423030060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423030060

Keywords:

Navigation