Skip to main content
Log in

Double Stage Friction Stir Spot Extrusion Welding: a Novel Manufacturing Technique for Joining Sheets

  • Research paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

A Novel Technique is proposed in this investigation called Double Stage Friction Stir Spot Extrusion Welding (DSFSSEW). It is carried out in two stages by using a pin-shoulder tool in step 1 and a pin-less tool in step 2 to investigate the joint strength of the AA1050 sheet. The advantage of this new double-stage FSSEW technique compared to the classical FSSW led to the elimination of the keyhole, which is an intrinsic flaw of the Friction Stir Spot Welding (FSSW) process resulting in higher mechanical joint properties. The impact of the plunge depth and tool revolving speed on the characteristics of the bond was investigated. The height of the extruded aluminium was increased by increasing the tool rotation speed and the plunging depth which was the effective variable. The joint strength was increased in step 2. The two sheets are bonding together at a line of the interface by a mechanical interlock formed by a continuous metal flow of aluminium extrusion that is free of flaws. There were two mechanisms of failure in the studied samples: cleavage of the aluminium metal at the tool trace and shearing of the extruded aluminium, respectively. The suggested method is novel and has a great potential for future investigation, this work might pave the way for studies of welding with additional alloys, both similar and dissimilar to those already studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data Availability

The data that support the findings of this study are not publicly available to preserve individuals’ privacy under the Middle Technical University Data Protection Regulation.

References

  1. Abdollahzadeh A, Bagheri B, Shamsipur A (2022) Development of Al/Cu/SiC bimetallic nano-composite by friction stir spot welding. Mater Manuf Process:1–10. https://doi.org/10.1080/10426914.2022.2157435

  2. Abdollahzadeh A, Bagheri B, Vaneghi AH, Shamsipur A, Mirsalehi SE (2022) Advances in simulation and experimental study on intermetallic formation and thermomechanical evolution of Al–Cu composite with Zn interlayer: effect of spot pass and shoulder diameter during the pinless friction stir spot welding process. Proc Inst Mech Eng Part L J Mater Des Appl 237(6):1475–1494. https://doi.org/10.1177/14644207221146981

    Article  CAS  Google Scholar 

  3. Bagheri B, Shamsipur A, Abdollahzadeh A, Mirsalehi SE (2023) Investigation of SiC nanoparticle size and distribution effects on microstructure and mechanical properties of Al/SiC/Cu composite during the FSSW process: experimental and simulation. Met Mater Int 29(4):1095–1112. https://doi.org/10.1007/s12540-022-01284-8

    Article  CAS  Google Scholar 

  4. Bagheri B, Abdollahzadeh A, Shamsipur A (2023) A different attempt to analysis friction stir spot welding of AA5083-copper alloys. Mater Sci Technol 39(9):1083–1089. https://doi.org/10.1080/02670836.2022.2159633

    Article  ADS  CAS  Google Scholar 

  5. Paidar M, Asgari A, Ojo OO, Saberi A (2018) Mechanical properties and wear behavior of AA5182/WC nanocomposite fabricated by friction stir welding at different tool traverse speeds. J Mater Eng Perform 27(4):1714–1724. https://doi.org/10.1007/s11665-018-3297-7

    Article  CAS  Google Scholar 

  6. Feng K, Watanabe M, Kumai S (2011) Microstructure and Joint strength of friction stir spot welded 6022 aluminum alloy sheets and plated steel sheets. Mater Trans 52(7):1418–1425. https://doi.org/10.2320/matertrans.L-M2011811

    Article  CAS  Google Scholar 

  7. Uematsu Y, Tokaji K, Tozaki Y, Kurita T, Murata S (2008) Effect of re-filling probe hole on tensile failure and fatigue behaviour of friction stir spot welded joints in Al–Mg–Si alloy. Int J Fatigue 30(10):1956–1966. https://doi.org/10.1016/j.ijfatigue.2008.01.006

    Article  CAS  Google Scholar 

  8. Babu S, Sankar VS, Janaki Ram GD, Venkitakrishnan PV, Madhusudhan Reddy G, Prasad Rao K (2013) Microstructures and mechanical properties of friction stir spot welded aluminum alloy AA2014. J Mater Eng Perform 22(1):71–84. https://doi.org/10.1007/s11665-012-0218-z

    Article  CAS  Google Scholar 

  9. Rouzbehani R, Kokabi AH, Sabet H, Paidar M, Ojo OO (2018) Metallurgical and mechanical properties of underwater friction stir welds of Al7075 aluminum alloy. J Mater Process Technol 262:239–256. https://doi.org/10.1016/j.jmatprotec.2018.06.033

    Article  CAS  Google Scholar 

  10. Paidar M, Memon S, Samusenkov VO, Babaei B, Ojo OO (2021) Friction spot extrusion welding-brazing of copper to aluminum alloy. Mater Lett 285:129160. https://doi.org/10.1016/j.matlet.2020.129160

    Article  CAS  Google Scholar 

  11. Ebrahimzadeh V, Paidar M, Safarkhanian MA, OladimejiOjo O (2018) Orbital friction stir lap welding of AA5456-H321/AA5456-O aluminum alloys under varied parameters. Int J Adv Manuf Technol 96(1):1237–1254. https://doi.org/10.1007/s00170-018-1679-5

    Article  Google Scholar 

  12. Paidar M, Ojo OO, Moghanian A, Pabandi HK, Elsa M (2019) Pre-threaded hole friction stir spot welding of AA2219/PP-C30S sheets. J Mater Process Technol 273:116272. https://doi.org/10.1016/j.jmatprotec.2019.116272

    Article  CAS  Google Scholar 

  13. Li W, Li J, Zhang Z, Gao D, Wang W, Dong C (2014) Improving mechanical properties of pinless friction stir spot welded joints by eliminating hook defect. Mater Des 62:247–254. https://doi.org/10.1016/j.matdes.2014.05.028

    Article  CAS  Google Scholar 

  14. Xie GM, Ma ZY, Geng L (2007) Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper. Scr Mater 57(2):73–76. https://doi.org/10.1016/j.scriptamat.2007.03.048

    Article  CAS  Google Scholar 

  15. Okuyucu H, Kurt A, Arcaklioglu E (2007) Artificial neural network application to the friction stir welding of aluminum plates. Mater Des 28(1):78–84. https://doi.org/10.1016/j.matdes.2005.06.003

    Article  CAS  Google Scholar 

  16. Ren SR, Ma ZY, Chen LQ (2007) Effect of welding parameters on tensile properties and fracture behavior of friction stir welded Al–Mg–Si alloy. Scr Mater 56(1):69–72. https://doi.org/10.1016/j.scriptamat.2006.08.054

    Article  CAS  Google Scholar 

  17. Li D, Chrysanthou A, Patel I, Williams G (2017) Self-piercing riveting-a review. Int J Adv Manuf Technol 92(5):1777–1824. https://doi.org/10.1007/s00170-017-0156-x

    Article  Google Scholar 

  18. Ni ZL, Ye FX (2018) Ultrasonic spot welding of aluminum alloys: a review. J Manuf Process 35:580–594. https://doi.org/10.1016/j.jmapro.2018.09.009

    Article  Google Scholar 

  19. Hajavifard R, Motahari M, Özden H, Miyanaji H, Kafashi S (2016) The effects of pulse shaping variation in laser spot-welding of aluminum. Procedia Manuf 5:232–247. https://doi.org/10.1016/j.promfg.2016.08.021

    Article  Google Scholar 

  20. Paidar M, Bokov D, Mehrez S, Nasution MKM, Ojo OO, Zain AM (2022) The influence of the backing plate materials on microstructure and mechanical properties of friction spot extrusion brazing of AA2024-T3 aluminum alloy and Brass sheets. J Manuf Process 74:28–39. https://doi.org/10.1016/j.jmapro.2021.12.002

    Article  Google Scholar 

  21. Oikawa M, Atsumi K, Otsuka Y, Kawada N (2021) Development of condition monitoring system for electric resistance spot welding used to manufacture railway car bodies. J Robot Mechatronics 33(2):421–431. https://doi.org/10.20965/jrm.2021.p0421

    Article  Google Scholar 

  22. Procesov EPO (2011) Experimental comparison of resistance spot welding and friction-stir spot welding processes for the en aw 5005 aluminum alloy. Mater Tehnol 45(5):395–399

    Google Scholar 

  23. Shen Z, Ding Y, Gerlich AP (2020) Advances in friction stir spot welding. Crit Rev Solid State Mater Sci 45(6):457–534. https://doi.org/10.1080/10408436.2019.1671799

    Article  ADS  CAS  Google Scholar 

  24. Shen Z, Ding Y, Gopkalo O, Diak B, Gerlich AP (2018) Effects of tool design on the microstructure and mechanical properties of refill friction stir spot welding of dissimilar Al alloys. J Mater Process Technol 252:751–759. https://doi.org/10.1016/j.jmatprotec.2017.10.034

    Article  CAS  Google Scholar 

  25. Reimann M, Goebel J, dos Santos JF (2017) Microstructure and mechanical properties of keyhole repair welds in AA 7075–T651 using refill friction stir spot welding. Mater Des 132:283–294. https://doi.org/10.1016/j.matdes.2017.07.013

    Article  CAS  Google Scholar 

  26. Abdullah IT, Hussein SK (2018) Improving the joint strength of the friction stir spot welding of carbon steel and copper using the design of experiments method. Multidiscip Model Mater Struct 14(5):908–922. https://doi.org/10.1108/MMMS-02-2018-0025

    Article  CAS  Google Scholar 

  27. Hussein SK, Abdullah IT, Hussein AK (2019) Spot lap joining of AA5052 to AISI 1006 by aluminium extrusion via friction forming technique. Multidiscip Model Mater Struct 15(6):1337–1351. https://doi.org/10.1108/MMMS-04-2019-0082

    Article  CAS  Google Scholar 

  28. Venukumar S, Muthukumaran S, Swaroop Y (2013) Microstructure and mechanical properties of refilled friction stir spot welding of commercial pure aluminium. Mater Sci Forum 765:776–780. https://doi.org/10.4028/www.scientific.net/MSF.765.776

    Article  CAS  Google Scholar 

  29. Zhang Z, Wang X, Wang P, Zhao G (2014) Friction stir keyholeless spot welding of AZ31 Mg alloy-mild steel. Trans Nonferrous Met Soc China 24(6):1709–1716. https://doi.org/10.1016/S1003-6326(14)63244-1

    Article  CAS  Google Scholar 

  30. Pan T, Joaquin A, Wilkosz DE, Reatherford L, Nicholson JM, Feng Z, Santella ML (2004) Spot friction welding for sheet aluminum joining. In: Proceedings of the 5th international symposium of friction stir welding, vol 1416. Metz 

  31. Ibrahim IJ, Yapici GG (2018) Application of a novel friction stir spot welding process on dissimilar aluminum joints. J Manuf Process 35:282–288. https://doi.org/10.1016/j.jmapro.2018.08.018

    Article  Google Scholar 

  32. Ibrahim IJ, Yapici GG (2019) Optimization of the intermediate layer friction stir spot welding process. Int J Adv Manuf Technol 104(1):993–1004. https://doi.org/10.1007/s00170-019-03952-3

    Article  Google Scholar 

  33. Paidar M, Ali KSA, Mohanavel V, Mehrez S, Ravichandran M, Ojo OO (2021) Weldability and mechanical properties of AA5083-H112 aluminum alloy and pure copper dissimilar friction spot extrusion welding-brazing. Vacuum 187:110080. https://doi.org/10.1016/j.vacuum.2021.110080

    Article  ADS  CAS  Google Scholar 

  34. Ojo OO, Taban E, Kaluc E (2015) Friction stir spot welding of aluminum alloys: a recent review. 57(7–8):609–627. https://doi.org/10.3139/120.110752

  35. Jedrasiak P et al (2016) Thermal modeling of Al-Al and Al-steel friction stir spot welding. J Mater Eng Perform 25(9):4089–4098. https://doi.org/10.1007/s11665-016-2225-y

    Article  CAS  Google Scholar 

  36. Yu M, Zhao H, Zhang Z, Zhou L, Song X (2022) Friction surfacing assisted refilled friction stir spot welding of AA6061 alloy and Q235 steel. J Manuf Process 77:1–12. https://doi.org/10.1016/j.jmapro.2022.03.006

    Article  Google Scholar 

  37. Liyanage T, Kilbourne J, Gerlich AP, North TH (2009) Joint formation in dissimilar Al alloy/steel and Mg alloy/steel friction stir spot welds. Sci Technol Weld Join 14(6):500–508. https://doi.org/10.1179/136217109X456960

    Article  CAS  Google Scholar 

  38. Abdullah IT, Hussein SK (2019) Shear strength and temperature distribution model of friction spot lap joint of high density polyethylene with aluminum alloy 7075. Int J Struct Integr 10(4):469–483. https://doi.org/10.1108/IJSI-05-2018-0025

    Article  Google Scholar 

  39. Gao K, Zhang S, Mondal M, Basak S, Hong S-T, Shim H (2021) Friction stir spot butt welding of dissimilar S45C steel and 6061-T6 aluminum alloy. Metals 11(8). https://doi.org/10.3390/met11081252

  40. Ojo OO (2019) Multi-objective optimization of friction stir spot welds of aluminum alloy using entropy measurement. Int J Eng Res Africa 45:28–41. https://doi.org/10.4028/www.scientific.net/JERA.45.28

    Article  Google Scholar 

  41. Mejbel MK, Abdullah IT, Taieh NK (2022) Thin wall manufacturing improvement using novel simultaneous double-sided cutter milling technique. Int J Automot Mech Eng 19(1):6519–6529. https://doi.org/10.15282/ijame.19.1.2022.15.0734

    Article  CAS  Google Scholar 

  42. Mejbel MK, Khalaf MM, Kwad AM (2021) Improving the machined surface of AISI H11 tool steel in milling process. J Mech Eng Res Dev 44(4):55–68. https://www.researchgate.net/profile/MohanadMejbel/publication/351117059_Improving_the_Machined_Surface_of_AISI_H11_Tool_Steel_in_Milling_Process/links/608856ff907dcf667bcabfec/Improvingthe-Machined-Surface-of-AISI-H11-Tool-Steel-in-Milling-Process.pdf

  43. A. S. for T. and Materials (2017) ASTM E384: standard test method for microindentation hardness of materials

  44. Mejbel MK, Atwan HR, Abdullah IT (2021) Void formation in friction stir welding of AA5052 butt joining. J Mech Eng Res Dev 44(5):318–332.  https://www.researchgate.net/profile/MohanadMejbel/publication/351116882_Void_Formation_in_Friction_Stir_Welding_of_AA5052_Butt_Joining/links/608855b1881fa114b431a418/Void-Formationin-Friction-Stir-Welding-of-AA5052-Butt-Joining.pdf

  45. Shankar S, Chattopadhyaya S (2020) Friction stir welding of commercially pure copper and 1050 aluminum alloys. Mater Today Proc 25:664–667. https://doi.org/10.1016/j.matpr.2019.07.719

    Article  CAS  Google Scholar 

  46. Vaneghi AH, Bagheri B, Shamsipur A, Mirsalehi SE, Abdollahzadeh A (2022) Investigations into the formation of intermetallic compounds during pinless friction stir spot welding of AA2024-Zn-pure copper dissimilar joints. Weld World 66(11):2351–2369. https://doi.org/10.1007/s40194-022-01366-6

    Article  CAS  Google Scholar 

  47. Bagheri B, Abbasi M, Givi M (2019) Effects of vibration on microstructure and thermal properties of Friction Stir Spot Welded (FSSW) aluminum alloy (Al5083). Int J Precis Eng Manuf 20(7):1219–1227. https://doi.org/10.1007/s12541-019-00134-9

    Article  Google Scholar 

  48. Bagheri B, Abbasi M, Hamzeloo R (2020) The investigation into vibration effect on microstructure and mechanical characteristics of friction stir spot vibration welded aluminum: Simulation and experiment. Proc Inst Mech Eng Part C J Mech Eng Sci 234(9):1809–1822. https://doi.org/10.1177/0954406219900194

    Article  CAS  Google Scholar 

  49. Yang Q, Mironov S, Sato YS, Okamoto K (2010) Material flow during friction stir spot welding. Mater Sci Eng A 527(16):4389–4398. https://doi.org/10.1016/j.msea.2010.03.082

    Article  CAS  Google Scholar 

  50. Silva BH, Zepon G, Bolfarini C, dos Santos JF (2020) Refill friction stir spot welding of AA6082-T6 alloy: hook defect formation and its influence on the mechanical properties and fracture behavior. Mater Sci Eng A 773:138724. https://doi.org/10.1016/j.msea.2019.138724

    Article  CAS  Google Scholar 

  51. Ravi KK, Narayanan RG, Rana PK (2019) Friction Stir Spot Welding of Al6082-T6/HDPE/Al6082-T6/HDPE/Al6082-T6 sandwich sheets: hook formation and lap shear test performance. J Mater Res Technol 8(1):615–622. https://doi.org/10.1016/j.jmrt.2018.05.011

    Article  CAS  Google Scholar 

  52. Yin YH, Sun N, North TH, Hu SS (2010) Hook formation and mechanical properties in AZ31 friction stir spot welds. J Mater Process Technol 210(14):2062–2070. https://doi.org/10.1016/j.jmatprotec.2010.07.029

    Article  CAS  Google Scholar 

  53. Memon S, Paidar M, Mehta KP, Babaei B, Lankarani HM (2021) Friction spot extrusion welding on dissimilar materials AA2024-T3 to AA5754-O: effect of shoulder plunge depth. J Mater Eng Perform 30(1):334–345. https://doi.org/10.1007/s11665-020-05387-4

    Article  CAS  Google Scholar 

  54. Hetenyi M, McDonald PH Jr (1958) Contact stresses under combined pressure and twist. J Appl Mech 25(3):396–401. https://doi.org/10.1115/1.4011834

    Article  MathSciNet  Google Scholar 

  55. Yang Q, Mironov S, Sato YS, Okamoto K (2016) Deformation Behavior of Friction Stir Processed Magnesium Alloys BT - Magnesium Technology 2011. In: Sillekens WH, Agnew SR, Neelameggham NR, Mathaudhu SN (eds). Springer International Publishing, Cham, pp. 199–203

  56. Barekatain H, Kazeminezhad M, Kokabi AH (2014) Microstructure and mechanical properties in dissimilar butt friction stir welding of severely plastic deformed aluminum AA 1050 and commercially pure copper sheets. J Mater Sci Technol 30(8):826–834. https://doi.org/10.1016/j.jmst.2013.11.007

    Article  CAS  Google Scholar 

  57. Sanusi KO, Akinlabi ET (2017) Friction-stir processing of a composite aluminium alloy (AA 1050) reinforced with titanium carbide powder. Mater Tehnol 51(3):427–435. https://doi.org/10.17222/mit.2016.021

    Article  CAS  Google Scholar 

  58. Liu H, Fujii H, Maeda M, Nogi K (2002) Tensile properties and their heterogeneity in friction stir welded joints of a strain hardened aluminum alloy (Materials, Metallurgy & Weldability). Trans JWRI 31(2):193–199. https://doi.org/10.18910/10029

    Article  Google Scholar 

Download references

Funding

This work is self-funded by the authors, no funding was provided from any organization or firm.

Author information

Authors and Affiliations

Authors

Contributions

First Author: Idea concept, funding, experimental work, testing.

Second Author: funding, writing the manuscript, testing, evaluation, analysis, discussion, manuscript final proof.

Third Author: Modelling, software programming, evaluation, manuscript final proof.

Corresponding author

Correspondence to M.K. Mejbel.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, I., Mejbel, M. & Al-bhadle, B. Double Stage Friction Stir Spot Extrusion Welding: a Novel Manufacturing Technique for Joining Sheets. Exp Tech 48, 323–342 (2024). https://doi.org/10.1007/s40799-023-00660-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-023-00660-2

Keywords

Navigation