Skip to main content
Log in

Dynamic modelling strategy of a shaft-disk-blade coupling system integrating beam and shell theories

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Despite the remarkable success achieved in modelling the rotor-disk-blade coupling system, the existing research does not adequately consider both the structural flexibility and the rotating effects in the shaft, disk, and blade components. To bridge this gap, a dynamic modelling strategy has been developed for the shaft-disk-blade coupling system using an in-house code that integrates the Timoshenko beam and Mindlin-Reissner shell elements. In addition, two critical issues concerning the couplings of the shaft-disk and disk-blade are successfully addressed by using the penalty method in conjunction with the compatibility equation of deformation. Subsequently, the improved modelling strategies for the shaft-disk coupling system, with and without blade components, are verified by comparing their static/dynamic frequencies and modal shapes with those obtained from experiments and solid models in ANSYS. The results indicate that the beam-shell hybrid model exhibits good accuracy and high efficiency in simulating the dynamic characteristics of the shaft-disk coupling system with and without blades. The modal characteristics of the entire rotor system have a series of flexible vibration modes, including bending/torsion/axial mode for the shaft, pitch diameter/umbrella-type mode for the disk, and bending mode for the blade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets used and/or analysed in the current study can be obtained from the corresponding author upon reasonable request.

References

  • Ahmad, S., Irons, B.M., Zienkiewicz, O.C.: Analysis of thick and thin shell structures by curved finite elements. Int. J. Numer. Meth. Eng. 2(3), 419–451 (1970)

    Article  Google Scholar 

  • ANSYS Mechanical APDL and Mechanical Applications Theory Reference, ANSYS Release 13.0, ANSYS Inc., 2010.

  • Arzina, D.: Vibration analysis of compressor blade tip-rubbing. Cranfield University (2011).

  • Batailly, A., Legrand, M., Cartraud, P., Pierre, C.: Assessment of reduced models for the detection of modal interaction through rotor stator contacts. J. Sound Vib. 329(26), 5546–5562 (2010)

    Article  Google Scholar 

  • Bazoune, A., Khulief, Y.A., Stephen, N.G.: Shape functions of three-dimensional Timoshenko beam element. J. Sound Vib. 259(2), 473–480 (2003)

    Article  Google Scholar 

  • Chai, Q.D., Zeng, J., Ma, H., Li, K., Wen, B.C.: A dynamic modeling approach for nonlinear vibration analysis of the L-type pipeline system with clamps. Chin. J. Aeronaut. 33(12), 3253–3265 (2019)

    Article  Google Scholar 

  • Chen, G.: Vibration modelling and verifications for whole aero-engine. J. Sound Vib. 349, 163–176 (2015)

    Article  Google Scholar 

  • Chen, G.: Simulation of casing vibration resulting from blade–casing rubbing and its verifications. J. Sound Vib. 361, 190–209 (2016)

    Article  Google Scholar 

  • Chen, Y.S., Zhang, H.B.: Review and prospect on the research of dynamics of complete aero-engine systems. Acta Aeronautica Et Astronautica Sinica 32(8), 1371–1391 (2011). (in Chinese)

    Google Scholar 

  • Chiang, H.W.D., Hsu, C.N., Tu, S.H.: Rotor-bearing analysis for turbomachinery single-and dual-rotor systems. J. Propul. Power 20(6), 1096–1104 (2004)

    Article  Google Scholar 

  • Chipato, E.T., Shaw, A.D., Friswell, M.I.: Nonlinear rotordynamics of a MDOF rotor–stator contact system subjected to frictional and gravitational effects. Mech. Syst. Signal Process. 159, 107776 (2021)

    Article  Google Scholar 

  • Chun, S.B., Lee, C.W.: Vibration analysis of shaft-bladed disk system by using substructure synthesis and assumed modes method. J. Sound Vib. 189(5), 587–608 (1996)

    Article  Google Scholar 

  • Cook, R.D.: On the Allman triangle and a related quadrilateral element. Comput. Struct. 22(6), 1065–1067 (1986)

    Article  Google Scholar 

  • Du, B., Qin, Z.Y., Lu, Q.L., Chen, L.: Dynamic modeling of tie-bolt rotors via fractal contact theory and virtual material method. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 236(11), 5900–5915 (2022)

    Article  Google Scholar 

  • Fu, C., Yang, Y.F., Lu, K., Gu, F.S.: Nonlinear vibration analysis of a rotor system with parallel and angular misalignments under uncertainty via a Legendre collocation approach. Int. J. Mech. Mater. Des. 16(3), 557–568 (2020)

    Article  Google Scholar 

  • Fu, C., Sinou, J.J., Zhu, W.D., Zhao, J.P., Lu, K., Yang, Y.F.: A state-of-the-art review on uncertainty analysis of rotor systems. Mech. Syst. Signal Process. 183, 109619 (2023)

    Article  Google Scholar 

  • Geradin, M., Kill, N.: A new approach to finite element modelling of flexible rotors. Eng. Comput. 1(1), 52–64 (1984)

    Article  Google Scholar 

  • Gubran, A.A., Sinha, J.K.: Shaft instantaneous angular speed for blade vibration in rotating machine. Mech. Syst. Signal Process. 44(1–2), 47–59 (2014)

    Article  Google Scholar 

  • Guo, X.M., Zeng, J., Ma, H., Zhao, C.G., Yu, X., Wen, B.C.: A dynamic model for simulating rubbing between blade and flexible casing. J. Sound Vib. 466, 1–43 (2019)

    Google Scholar 

  • Hai, P.M., Bonello, P.: A computational parametric analysis of the vibration of a three-spool aero-engine under multifrequency unbalance excitation. J. Eng. Gas Turbines Power 133(7), 1–11 (2011)

    Article  Google Scholar 

  • Harsha, S.P.: Nonlinear dynamic analysis of an unbalanced rotor supported by roller bearing. Chaos, Solitons Fractals 26(1), 47–66 (2005)

    Article  Google Scholar 

  • He, Q., Xie, Z., Xuan, H.J., Liu, L.L., Hong, W.R.: Multi-blade effects on aero-engine blade containment. Aerosp. Sci. Technol. 49, 101–111 (2016)

    Article  Google Scholar 

  • Hong, J., Li, T.R., Liang, Z.C., Zhang, D.Y., Ma, Y.H.: Research on blade-casing rub-impact mechanism by experiment and simulation in aeroengines. Shock. Vib. 2019, 1–15 (2019)

    Article  Google Scholar 

  • Hou, L., Chen, Y.S., Fu, Y.Q., Chen, H.Z., Lu, Z.Y., Liu, Z.S.: Application of the HB–AFT method to the primary resonance analysis of a dual-rotor system. Nonlinear Dyn. 88(4), 2531–2551 (2017)

    Article  Google Scholar 

  • Husband, J.B.: Developing an efficient fem structural simulation of a fan blade off test in a turbofan engine, University of Saskatchewan (2007).

  • Kanok-nukulchai, W.: A simple and efficient finite element for general shell analysis. Int. J. Numer. Meth. Eng. 14(2), 179–200 (1979)

    Article  Google Scholar 

  • Legrand, M., Pierre, C., Peseux, B.: Structural modal interaction of a four degree-of-freedom bladed disk and casing model. J. Comput. Nonlinear Dyn. 5(4), 1–17 (2010)

    Google Scholar 

  • Li, C.F., Shen, Z.C., Zhong, B.F., Wen, B.C.: Study on the nonlinear characteristics of a rotating flexible blade with dovetail interface feature. Shock. Vib. 2018, 1–13 (2018)

    Google Scholar 

  • Li, B.Q., Ma, H., Yu, X., Zeng, J., Guo, X.M., Wen, B.C.: Nonlinear vibration and dynamic stability analysis of rotor-blade system with nonlinear supports. Arch. Appl. Mech. 89(7), 1375–1402 (2019)

    Article  Google Scholar 

  • Li, Y.Q., Luo, Z., Liu, J.X., Ma, H., Yang, D.S.: Dynamic modeling and stability analysis of a rotor-bearing system with bolted-disk joint. Mech. Syst. Signal Process. 158, 107778 (2021)

    Article  Google Scholar 

  • Liu, Y.Z., Zhang, H.Y., Hu, P., Wang, Y., Shi, Y.F.: Research on the vibration characteristics of the ball bearing considering the uncertain bearing-shaft interference fit. Proc. Inst. Mech. Eng. J. Mech. Eng. Sci. (2023). https://doi.org/10.1177/09544062231167021

    Article  Google Scholar 

  • Ma, H., Shi, C.Y., Han, Q.K., Wen, B.C.: Fixed-point rubbing fault characteristic analysis of a rotor system based on contact theory. Mech. Syst. Signal Process. 38(1), 137–153 (2013a)

    Article  Google Scholar 

  • Ma, H., Li, H., Zhao, X.Y., Niu, H.Q., Wen, B.C.: Effects of eccentric phase difference between two discs on oil-film instability in a rotor–bearing system. Mech. Syst. Signal Process. 41(1–2), 526–545 (2013b)

    Article  Google Scholar 

  • Ma, H., Lu, Y., Wu, Z.Y., Tai, X.Y., Li, H., Wen, B.C.: A new dynamic model of rotor–blade systems. J. Sound Vib. 357, 168–194 (2015a)

    Article  Google Scholar 

  • Ma, H., Zhao, Q.B., Zhao, X.Y., Han, Q.K., Wen, B.C.: Dynamic characteristics analysis of a rotor-stator system under different rubbing forms. Appl. Math. Model. 39(8), 2392–2408 (2015b)

    Article  Google Scholar 

  • Meher-Homji, C.B., Gabriles, G.A.: Gas turbine blade failures-causes, avoidance, and troubleshooting, in Twenty-Seventh Turbomachinery Symposium, Houston, Texas (1998).

  • Nelson, H.D., McVaugh, J.M.: The dynamics of rotor-bearing systems using finite elements. J. Eng. Ind. 98(2), 593–600 (1976)

    Article  Google Scholar 

  • Paltrinieri, J., Nyssen, F., Parent, M.O., Batailly, A.: Towards full 3d numerical simulation of whirl motions stemming from unilateral contact constraints in aircraft engines. In: Proceedings of ASME Turbo Expo 2017: turbomachinery technical conference and exposition, Charlotte, NC, USA (2017)

  • Parent, M.O., Thouverez, F.: Phenomenological model for stability analysis of bladed rotor-to-stator contacts. In: International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Hawaii, Honolulu (2016)

  • Petrov, E.P., Ewins, D.J.: Analysis of the worst mistuning patterns in bladed disk assemblies. J. Turbomach. 125(4), 623–631 (2003)

    Article  Google Scholar 

  • Prabith, K., Krishna, I.R.P.: The stability analysis of a two-spool rotor system undergoing rub-impact. Nonlinear Dyn. 104, 941–969 (2021)

    Article  Google Scholar 

  • Qin, Z.Y., Yang, Z.B., Zu, J., Chu, F.L.: Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates. Int. J. Mech. Sci. 142, 127–139 (2018)

    Article  Google Scholar 

  • She, H.X., Li, C.F., Tang, Q.S., Wen, B.C.: The investigation of the coupled vibration in a flexible-disk blades system considering the influence of shaft bending vibration. Mech. Syst. Signal Process. 111, 545–569 (2018)

    Article  Google Scholar 

  • Sinha, S.K.: Rotordynamic analysis of asymmetric turbofan rotor due to fan blade-loss event with contact-impact rub loads. J. Sound Vib. 332(9), 2253–2283 (2013)

    Article  Google Scholar 

  • Tuzzi, G., Schwingshackl, C.W., Green, J.S.: Study of coupling between shaft bending and disc zero nodal diameter modes in a flexible shaft-disc assembly. J. Sound Vib. 479, 115362 (2020)

    Article  Google Scholar 

  • Vu-Bac, N., Duong, T.X., Lahmer, T., Zhuang, X., Sauer, R.A., Park, H.S., Rabczuk, T.: A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures. Comput. Methods Appl. Mech. Eng. 331, 427–455 (2018)

    Article  MathSciNet  Google Scholar 

  • Vu-Bac, N., Duong, T.X., Lahmer, T., Areias, P., Sauer, R.A., Park, H.S., Rabczuk, T.: A NURBS-based inverse analysis of thermal expansion induced morphing of thin shells. Comput. Methods Appl. Mech. Eng. 350, 480–510 (2019)

    Article  MathSciNet  Google Scholar 

  • Vu-Bac, N., Rabczuk, T., Park, H.S., Fu, X., Zhuang, X.: A NURBS-based inverse analysis of swelling induced morphing of thin stimuli-responsive polymer gels. Comput. Methods Appl. Mech. Eng. 397, 115049 (2022)

    Article  MathSciNet  Google Scholar 

  • Wang, C., Zhang, D.Y., Ma, Y.H., Liang, Z.C., Hong, J.: Dynamic behavior of the aero-engine rotor with fusing design suffering blade off. Chin. J. Aeronaut. 30(3), 918–931 (2016)

    Article  Google Scholar 

  • Wang, N.F., Liu, C., Jiang, D.X.: Experimental analysis of dual-rotor-support-casing system with blade-casing rubbing. Eng. Fail. Anal. 123, 105306 (2021)

    Article  Google Scholar 

  • Wei, Y., Li, Y.Q., Xu, M.Q., Huang, W.H.: A review of early fault diagnosis approaches and their applications in rotating machinery. Entropy 21(4), 1–26 (2019)

    Article  Google Scholar 

  • Yang, C.H., Huang, S.C.: The influence of disk’s flexibility on coupling vibration of shaft–disk–blades systems. J. Sound Vib. 301(1–2), 1–17 (2007)

    Article  Google Scholar 

  • Yang, X.D., Wang, S.W., Zhang, W., Yang, T.Z., Lim, C.W.: Model formulation and modal analysis of a rotating elastic uniform Timoshenko beam with setting angle. Eur. J. Mech.-A/Solids 72, 209–222 (2018)

    Article  MathSciNet  Google Scholar 

  • Yang, Y., Ouyang, H.J., Zeng, J., Ma, H., Yang, Y.R., Cao, D.Q.: Investigation on dynamic characteristics of a rod fastening rotor-bearing coupling system with fixed-point rubbing. Appl. Math. Mech. (2022). https://doi.org/10.1007/s10483-022-2819-7

    Article  Google Scholar 

  • Yu, P.C., Zhang, D.Y., Ma, Y.H., Hong, J.: Dynamic modeling and vibration characteristics analysis of the aero-engine dual-rotor system with fan blade out. Mech. Syst. Signal Process. 106, 158–175 (2018)

    Article  Google Scholar 

  • Zeng, J., Ma, H., Ma, X.X., Wu, Z.Y., Qin, Z.Y.: Blade-loss-caused rubbing dynamic characteristics of rotor-bladed disk-casing system. Trans. Nanjing Univ. Aeronaut. Astronaut. 35(1), 116–125 (2018)

    Google Scholar 

  • Zeng, J., Zhao, C.G., Ma, H., Yu, K., Wen, B.C.: Rubbing dynamic characteristics of the blisk-casing system with elastic supports. Aerosp. Sci. Technol. 95, 1–18 (2019a)

    Article  Google Scholar 

  • Zeng, J., Ma, H., Yu, K., Xu, Z.T., Wen, B.C.: Coupled flapwise-chordwise-axial-torsional dynamic responses of rotating pre-twisted and inclined cantilever beams subject to the base excitation. Appl. Math. Mech. 40(8), 1053–1082 (2019b)

    Article  MathSciNet  Google Scholar 

  • Zhang, J., Liu, X.P.: Principle and numerical methods of modal analysis to turbomachines. National Defense Industry Press, Beijing (2001). (in Chinese)

    Google Scholar 

  • Zhao, Q., Yao, H.L., Xu, Q., Wen, B.C.: Prediction method for steady-state response of local rubbing blade-rotor systems. J. Mech. Sci. Technol. 29(4), 1537–1545 (2015)

    Article  Google Scholar 

  • Zhao, S.N., Zhang, X.N., Zhang, S.G., Safaei, B., Qin, Z.Y., Chu, F.L.: A unified modeling approach for rotating flexible shaft-disk systems with general boundary and coupling conditions. Int. J. Mech. Sci. 218, 107073 (2022a)

    Article  Google Scholar 

  • Zhao, S.N., Zhang, L.F., Zhu, R.Z., Han, Q.K., Qin, Z.Y., Chu, F.L.: Modeling approach for flexible shaft-disk-drum rotor systems with elastic connections and supports. Appl. Math. Model. 106, 402–425 (2022b)

    Article  MathSciNet  Google Scholar 

  • Zheng, Z.L., Fu, C., Zhu, W.D., Zhao, J.P., Zhang, K.F., Lu, K.: A non-intrusive frequency normalisation approach for uncertain response analysis of nonlinear dynamic systems. Mech. Syst. Signal Process. 188, 110005 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This project is financially supported by the National Natural Science Foundation (Grant nos. 12202368, 12172307, 12172311), the Natural Science Foundation of Sichuan Province (Grant Nos. 22NSFSC0576, 22NSFSC0666, 2023NSFSC0068), the Opening Project of Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province (No. SZZZKT-202206), the Key Laboratory of Vibration and Control of Aero-Propulsion System, Ministry of Education, Northeastern University of China (No. VCAME202205, VCAME202103), and the Fundamental Research Funds for the Central Universities (Grant nos. 2682021CX081, 2682021ZTPY036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Shaft-related matrices

Appendix A: Shaft-related matrices

The mass matrix \({\mathbf{M}}_{{{\text{beam}}}}^{{\text{e}}}\) is defined as follows:

(24)

The structural stiffness matrix \({\mathbf{K}}_{{\text{beam,0}}}^{{\text{e}}}\) is defined as follows:

(25)

The expressions of the shape functions in Eqs. (24) and (25) are shown as follows:

$$\left\{ \begin{gathered} N_{u,1} = 1 - \xi ,N_{u,2} = \xi ,N_{\theta x,1} = 1 - \xi ,N_{\theta x,2} = \xi \hfill \\ N_{v,1} = \overline{\Phi }_{z} \left( {1 - 3\xi^{2} + 2\xi^{3} + \left( {1 - \xi } \right)\Phi_{z} } \right) \hfill \\ N_{v,2} = l_{k} \overline{\Phi }_{z} \left( {\xi - 2\xi^{2} + \xi^{3} + 0.5\left( {\xi - \xi^{2} } \right)\Phi_{z} } \right) \hfill \\ N_{v,3} = \overline{\Phi }_{z} \left( {3\xi^{2} - 2\xi^{3}_{z} + \xi \Phi } \right) \hfill \\ N_{v,4} = l_{k} \overline{\Phi }_{z} \left( { - \xi^{2} + \xi^{3} + 0.5\left( { - \xi + \xi^{2} } \right)\Phi_{z} } \right) \hfill \\ N_{w,1} = \overline{\Phi }_{y} \left( {1 - 3\xi^{2} + 2\xi^{3} + \left( {1 - \xi } \right)\Phi_{y} } \right) \hfill \\ N_{w,2} = l_{k} \overline{\Phi }_{y} \left( { - \xi + 2\xi^{2} - \xi^{3} + 0.5\left( { - \xi + \xi^{2} } \right)\Phi_{y} } \right) \hfill \\ N_{w,3} = \overline{\Phi }_{y} \left( {3\xi^{2} - 2\xi^{3} + \xi \Phi_{y} } \right) \hfill \\ N_{w,4} = l_{k} \overline{\Phi }_{y} \left( {\xi^{2} - \xi^{3} + 0.5\left( {\xi - \xi^{2} } \right)\Phi_{y} } \right) \hfill \\ \end{gathered} \right.$$
(26)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Yang, Y., Ma, H. et al. Dynamic modelling strategy of a shaft-disk-blade coupling system integrating beam and shell theories. Int J Mech Mater Des 20, 107–127 (2024). https://doi.org/10.1007/s10999-023-09664-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-023-09664-7

Keywords

Navigation