Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 27, 2023

Crown ether complexes as a possible template for hybrid organic–inorganic borates

  • Valentina A. Yukhno EMAIL logo , Dmitri O. Charkin , Alexander M. Banaru , Lev S. Manelis , Alevtina N. Gosteva , Sergey N. Volkov , Sergey M. Aksenov and Rimma S. Bubnova

Abstract

Crystals of the first new organo–inorganic hybrid borate based on potassium crown ether complex, [K(C12H24O6)B5O6(OH)4](H2O) (1), have been produced from aqueous solutions and characterized by single-crystal X-ray diffraction. 1 crystalizes is orthorhombic system, Pnma, a = 10.1684(3) Å, b = 11.6289(3) Å, c = 21.2247(6) Å, V = 2509.76(12) Å3, Robs = 0.059. The structure of 1 consists of molecular [K(C12H24O6)B5O6(OH)4]0 complexes, common for crown ether complexes but yet not among borates, with a very rare monodentate coordination of the common pentaborate anion(1-). The molecular complexes are linked into weak chains via hydrogen bonding to outer-sphere water molecules. Hirshfeld surfaces analysis and complexity measurement of 1 were performed. Perspectives of borate structures containing crown ether complexes as templates are briefly outlined.


Corresponding author: Valentina A. Yukhno, Grebenshchikov Institute of Silicate Chemistry, Makarov Emb. 2, St. Petersburg, 199034, Russia, E-mail:

Award Identifier / Grant number: 22-73-00026

Funding source: Institute of Silicate Chemistry (Russian Academy of Sciences)

Award Identifier / Grant number: 0081-2022-0002

Funding source: Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre (Russian Academy of Sciences)

Award Identifier / Grant number: 122011300125-2

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the Russian Science Foundation through the grant 22-73-00026. This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the scientific tasks of Institute of Silicate Chemistry (Russian Academy of Sciences) [project number 0081-2022-0002] and Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre (Russian Academy of Sciences) [project number 122011300125-2].

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Chen, C., Wu, B., Jiang, A., You, G. A new-type ultraviolet SHG crystal β-BaB2O4. Sci. Sin. 1985, 18, 235–243.Search in Google Scholar

2. Becker, P. Borate materials in nonlinear optics. Adv. Mater. 1998, 10, 979–992. https://doi.org/10.1002/(SICI)1521-4095(199809)10:13<979::AID-ADMA979>3.0.CO;2-N.10.1002/(SICI)1521-4095(199809)10:13<979::AID-ADMA979>3.0.CO;2-NSearch in Google Scholar

3. Chen, C., Sasaki, T., Li, R., Wu, Y., Lin, Z., Mori, Y., Hu, Z., Wang, J., Aka, G., Yoshimura, M., Kaneda, Y. Nonlinear Optical Borate Crystals: Principles and Applications; Wiley-VCH: Weinheim, 2012.10.1002/9783527646388Search in Google Scholar

4. Mutailipu, M., Poeppelmeier, K. R., Pan, S. Borates: a rich source for optical materials. Chem. Rev. 2021, 121, 1130–1202. https://doi.org/10.1021/acs.chemrev.0c00796.Search in Google Scholar

5. Sasaki, T., Mori, Y., Yoshimura, M., Yap, Y. K., Kamimura, T. Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light. Mater. Sci. Eng. R Rep. 2000, 30, 1–54. https://doi.org/10.1016/S0927-796X(00)00025-5.Search in Google Scholar

6. Bubnova, R. S., Filatov, S. K. High-temperature borate crystal chemistry. Z. Kristallogr. 2013, 228, 395–428. https://doi.org/10.1524/zkri.2013.1646.Search in Google Scholar

7. Xin, S.-S., Zhou, M.-H., Beckett, M. A., Pan, C.-Y. Recent advances in crystalline oxidopolyborate complexes of d-block or p-block metals: structural aspects, syntheses, and physical properties. Molecules 2021, 26, 3815. https://doi.org/10.3390/molecules26133815.Search in Google Scholar

8. Beckett, M. A. Recent advances in crystalline hydrated borates with non-metal or transition-metal complex cations. Coord. Chem. Rev. 2016, 323, 2–14. https://doi.org/10.1016/j.ccr.2015.12.012.Search in Google Scholar

9. Pan, C.-Y., Hu, S., Li, D.-G., Ouyang, P., Zhao, F.-H., Zheng, Y.-Y. The first ferroelectric templated borate: [Ni(en)2pip][B5O6(OH)4]2. Dalton Trans. 2010, 39, 5772. https://doi.org/10.1039/b925906f.Search in Google Scholar

10. Palatinus, L., Chapuis, G. Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786–790. https://doi.org/10.1107/S0021889807029238.Search in Google Scholar

11. Petříček, V., Dušek, M., Palatinus, L. Crystallographic computing system Jana2006: general features. Z. Kristallogr. 2014, 229, 345–352. https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

12. Rigaku, O. D. CrysAlis Pro 1.171.41.123a; Rigaku Oxford Diffraction: Yarnton, England, 2022.Search in Google Scholar

13. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008.10.1002/9780470405888Search in Google Scholar

14. Brubach, J.-B., Mermet, A., Filabozzi, A., Gerschel, A., Roy, P. Signatures of the hydrogen bonding in the infrared bands of water. J. Chem. Phys. 2005, 122, 184509. https://doi.org/10.1063/1.1894929.Search in Google Scholar

15. Asensio, M. O., Yildirim, M., Senberber, F. T., Kipcak, A. S., Derun, E. M. Thermal dehydration kinetics and characterization of synthesized potassium borates. Res. Chem. Intermed. 2016, 42, 4859–4878. https://doi.org/10.1007/s11164-015-2326-5.Search in Google Scholar

16. Showrilu, K., Ramesh, V., Rajarajan, K., Dhas, S. A. M. B. Synthesis, growth, structure, spectroscopic, and physicochemical properties of 18-crown-6-ether barium (II) bisthiocyanate monohydrate single crystal: BCBT. IOP Conf. Ser. Mater. Sci. Eng. 2020, 872, 012136. https://doi.org/10.1088/1757-899X/872/1/012136.Search in Google Scholar

17. Miyazawa, M., Fukushima, K., Oe, S. Conformation-determining factors for complexes of 18-crown-6 with cations. J. Mol. Struct. 1989, 195, 271–281. https://doi.org/10.1016/0022-2860(89)80174-7.Search in Google Scholar

18. Krivovichev, S. V. Topological complexity of crystal structures: quantitative approach. Acta Crystallogr., Sect. A: Found. Crystallogr. 2012, 68, 393–398. https://doi.org/10.1107/S0108767312012044.Search in Google Scholar

19. Krivovichev, S. V. Ladders of information: what contributes to the structural complexity of inorganic crystals. Z. Kristallogr. 2018, 233, 155–161.10.1515/zkri-2017-2117Search in Google Scholar

20. Banaru, D., Hornfeck, W., Aksenov, S., Banaru, A. On the origin of combinatorial complexity of the crystal structures with 0D, 1D, or 2D primary motifs. CrystEngComm 2023, 25, 2144–2158. https://doi.org/10.1039/D2CE01542K.Search in Google Scholar

21. Blatov, V. A., Shevchenko, A. P., Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. https://doi.org/10.1021/cg500498k.Search in Google Scholar

22. McKinnon, J. J., Mitchell, A. S., Spackman, M. A. Hirshfeld surfaces: a new tool for visualising and exploring molecular crystals. Chem. – A Eur. J. 1998, 4, 2136–2141. https://doi.org/10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-G.10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-GSearch in Google Scholar

23. Banaru, A. M., Banaru, D. A., Aksenov, S. M. On the subset of intermolecular contacts generating a molecular crystal: topological features of organic minerals. Crystallogr. Rep. 2022, 67, 1133–1145. https://doi.org/10.1134/S1063774522070410.Search in Google Scholar

24. Edwards, A. J., Mackenzie, C. F., Spackman, P. R., Jayatilaka, D., Spackman, M. A. Intermolecular interactions in molecular crystals: what’s in a name? Faraday Discuss. 2017, 203, 93–112. https://doi.org/10.1039/C7FD00072C.Search in Google Scholar

25. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D., Spackman, M. A. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575–587. https://doi.org/10.1107/S205225251700848X.Search in Google Scholar PubMed PubMed Central

26. Dey, D., Bhandary, S., Thomas, S. P., Spackman, M. A., Chopra, D. Energy frameworks and a topological analysis of the supramolecular features in in situ cryocrystallized liquids: tuning the weak interaction landscape via fluorination. Phys. Chem. Chem. Phys. 2016, 18, 31811–31820. https://doi.org/10.1039/C6CP05917A.Search in Google Scholar PubMed

27. Domasevitch, K. V., Ponomareva, V. V., Rusanov, E. B., Gelbrich, T., Sieler, J., Skopenko, V. V. Synthesis and crystal structure of rubidium hydrogen oximate complexes with 18-crown-6: is it possible to reach a perfect fit of the rubidium atom inside the crown ether cavity? Inorg. Chim. Acta 1998, 268, 93–101. https://doi.org/10.1016/S0020-1693(97)05724-1.Search in Google Scholar

28. Altahan, M. A., Beckett, M. A., Coles, S. J., Horton, P. N. Synthesis and characterization of polyborates templated by cationic copper(II) complexes: structural (XRD), spectroscopic, thermal (TGA/DSC) and magnetic properties. Polyhedron 2017, 135, 247–257. https://doi.org/10.1016/j.poly.2017.07.016.Search in Google Scholar

29. Burns, P., Grice, J., Hawthorne, F. C. Borate minerals. I. Polyhedral clusters and fundamental building blocks. Can. Mineral. 1995, 33, 1131–1151.Search in Google Scholar

30. Hawthorne, F. C., Burns, P. C., Grice, J. D. The crystal chemistry of boron. Rev. Mineral. Geochem. 1996, 33, 41–115.10.1515/9781501509223-004Search in Google Scholar

31. Ashmore, J. P., Petch, H. E. Hydrogen positions in potassium pentaborate tetrahydrate as determined by neutron diffraction. Can. J. Phys. 1970, 48, 1091–1097. https://doi.org/10.1139/p70-139.Search in Google Scholar

32. Penin, N., Seguin, L., Gérand, B., Touboul, M., Nowogrocki, G. Crystal structure of a new form of Cs[B5O6(OH)4].2H2O and thermal behavior of M[B5O6(OH)4].2H2O (M = Cs, Rb, Tl). J. Alloys Compd. 2002, 334, 97–109. https://doi.org/10.1016/S0925-8388(01)01768-6.Search in Google Scholar

33. Behm, H. Structure determination on a twinned crystal of cesium pentaborate tetrahydrate, Cs[B5O6(OH)4].2H2O. Acta Crystallogr. C 1984, 40, 1114–1116. https://doi.org/10.1107/S0108270184007009.Search in Google Scholar

34. Behm, H. Rubidium pentaborate tetrahydrate, Rb[B5O6(OH)4].2H2O. Acta Crystallogr. C 1984, 40, 217–220. https://doi.org/10.1107/S0108270184003644.Search in Google Scholar

35. Etter, M. C. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc. Chem. Res. 1990, 23, 120–126. https://doi.org/10.1021/ar00172a005.Search in Google Scholar

36. Visi, M. Z., Knobler, C. B., Owen, J. J., Khan, M. I., Schubert, D. M. Structures of self-assembled nonmetal borates derived from α,ω-diaminoalkanes. Cryst. Growth Des. 2006, 6, 538–545. https://doi.org/10.1021/cg0504915.Search in Google Scholar

37. Beckett, M. A., Coles, S. J., Davies, R. A., Horton, P. N., Jones, C. L. Pentaborate(1−) salts templated by substituted pyrrolidinium cations: synthesis, structural characterization, and modelling of solid-state H-bond interactions by DFT calculations. Dalton Trans. 2015, 44, 7032–7040. https://doi.org/10.1039/C5DT00248F.Search in Google Scholar

38. Carugo, O., Blatova, O. A., Medrish, E. O., Blatov, V. A., Proserpio, D. M. Packing topology in crystals of proteins and small molecules: a comparison. Sci. Rep. 2017, 7, 1–12. https://doi.org/10.1038/s41598-017-12699-4.Search in Google Scholar PubMed PubMed Central

39. Shevchenko, A. P., Shabalin, A. A., Karpukhin, I. Y., Blatov, V. A. Topological representations of crystal structures: generation, analysis and implementation in the TopCryst system. Sci. Technol. Adv. Mater. Methods 2022, 2, 250–265. https://doi.org/10.1080/27660400.2022.2088041.Search in Google Scholar

40. Banaru, A. M., Gridin, D. M. Coordination numbers and critical topology of centrosymmetric hydrocarbons. J. Struct. Chem. 2019, 60, 1885–1895. https://doi.org/10.1134/S0022476619120047.Search in Google Scholar

41. Banaru, A. M., Bond, A. D., Aksenov, S. M., Banaru, D. A. Molecular crystals with a sole bearing contact: structural classes and statistical data. Z. Kristallogr. 2022, 237, 271–279. https://doi.org/10.1515/zkri-2022-0017.Search in Google Scholar

42. Lord, E. A., Banaru, A. M. Number of generating elements in space group of a crystal. Moscow Univ. Chem. Bull. 2012, 67, 50–58. https://doi.org/10.3103/S0027131412020034.Search in Google Scholar

43. Steed, J. W. First- and second-sphere coordination chemistry of alkali metal crown ether complexes. Coord. Chem. Rev. 2001, 215, 171–221. https://doi.org/10.1016/S0010-8545(01)00317-4.Search in Google Scholar

44. Schubert, D. M., Visi, M. Z., Knobler, C. B. Guanidinium and imidazolium borates containing the first examples of an isolated nonaborate oxoanion: [B9O12(OH)6]3−. Inorg. Chem. 2000, 39, 2250–2251. https://doi.org/10.1021/ic000217u.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2023-0020).


Received: 2023-05-26
Accepted: 2023-06-15
Published Online: 2023-06-27
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2023-0020/html
Scroll to top button