Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 27, 2023

Selective oxidation of benzene to phenol in the liquid phase over copper-substituted LaFeO3 perovskite oxide as catalyst

  • Rajib Mistri EMAIL logo

Abstract

Selective oxidation of benzene to phenol is done in the liquid phase over copper-substituted LaFeO3 perovskite oxides as catalyst using H2O2 as oxidant under mild reaction conditions. Among the different copper-substituted perovskite catalysts synthesized by a novel solution combustion method, the LaFe0.90Cu0.10O3 catalyst showed highest activity (∼56 % with 100 % selectivity of phenol) and also gives better activity than the corresponding catalyst made via incipient wetness impregnation of 10 at % Cu over combustion-synthesized LaFeO3. XRD analysis revealed formation of the perovskite phase as the predominant one. The greater activity of the combustion-made catalyst has been attributed to the occurrence of a peculiar poorly-defined structure having substitutional copper ion sites on top of the LaFeO3 particle as observed in HRTEM analysis. Much less occurrence of this phase in the impregnated catalyst, where copper is primarily present as dispersed CuO crystallites, explains its comparatively lower activity in the oxidation reaction. The effect of catalyst recycling shows negligible change of activity for the combustion-made catalyst whereas the analogous impregnated catalyst shows considerable decrease in activity in recycling. This explained to be due to the essentially intact poorly-defined structure in the former and leaching of the finely dispersed CuO crystallites from the latter catalyst during cycling.


Corresponding author: Rajib Mistri, Department of Chemistry, Achhruram Memorial College, Jhalda, Purulia 723202, West Bengal, India, E-mail:

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Schmidt, R. J. Appl. Catal., A 2005, 280, 89–103; https://doi.org/10.1016/j.apcata.2004.08.030.Search in Google Scholar

2. Solyman, W. S., Nagiub, H. M., Alian, N. A., Shaker, N. O., Kandil, U. F. J. Radiat. Res. Appl. Sci. 2017, 10, 72–79; https://doi.org/10.1016/j.jrras.2016.12.003.Search in Google Scholar

3. Pryde, C., Hellman, M. J. Appl. Polym. Sci. 1980, 25, 2573–2587; https://doi.org/10.1002/app.1980.070251114.Search in Google Scholar

4. Takeichi, T., Furukawa, N. Epoxy resins and phenol-formaldehyde resins. In Polymer Science: A Comprehensive Reference. Elsevier BV: Amsterdam, 2021; pp. 723–751.10.1016/B978-0-444-53349-4.00157-6Search in Google Scholar

5. Brydson, J. A. Plastics Materials; Elsevier: Amsterdam, 1999.10.1016/B978-075064132-6/50073-5Search in Google Scholar

6. Zakoshansky, V. Pet. Chem. 2007, 47, 273–284; https://doi.org/10.1134/s096554410704007x.Search in Google Scholar

7. Park, H., Choi, W. Catal. Today 2005, 101, 291–297; https://doi.org/10.1016/j.cattod.2005.03.014.Search in Google Scholar

8. Fortuin, J., Waterman, H. Chem. Eng. Sci. 1953, 2, 182–192; https://doi.org/10.1016/0009-2509(53)80040-0.Search in Google Scholar

9. Molinari, R., Poerio, T. Asia-Pac. J. Chem. Eng. 2010, 5, 191–206; https://doi.org/10.1002/apj.369.Search in Google Scholar

10. Mancuso, A., Sacco, O., Sannino, D., Venditto, V., Vaiano, V. Catalysts 2020, 10, 1424–1445; https://doi.org/10.3390/catal10121424.Search in Google Scholar

11. Yuranov, I., Bulushev, D. A., Renken, A., Kiwi-Minsker, L. Appl. Catal., A 2007, 319, 128–136; https://doi.org/10.1016/j.apcata.2006.11.023.Search in Google Scholar

12. Hu, L., Wang, C., Ye, L., Wu, Y., Yue, B., Chen, X., He, H. Appl. Catal., A 2015, 504, 440–447; https://doi.org/10.1016/j.apcata.2014.10.056.Search in Google Scholar

13. Jiang, T., Wang, W., Han, B. New J. Chem. 2013, 37, 1654–1664; https://doi.org/10.1039/c3nj41163j.Search in Google Scholar

14. Guo, H., Chen, Z., Mei, F., Zhu, D., Xiong, H., Yin, G. Chem. Asian J. 2013, 8, 888–891; https://doi.org/10.1002/asia.201300003.Search in Google Scholar PubMed

15. Niwa, S., Eswaramoorthy, M., Nair, J., Raj, A., Itoh, N., Shoji, H., Namba, T., Mizukami, F. Science 2002, 295, 105–107; https://doi.org/10.1126/science.1066527.Search in Google Scholar PubMed

16. Parida, K., Rath, D. Appl. Catal., A 2007, 321, 101–108; https://doi.org/10.1016/j.apcata.2007.01.054.Search in Google Scholar

17. Peng, J., Shi, F., Gu, Y., Deng, Y. Green Chem. 2003, 5, 224–226; https://doi.org/10.1039/b211239f.Search in Google Scholar

18. Nomiya, K., Yagishita, K., Nemoto, Y., Kamataki, T. J. Mol. Catal. A: Chem. 1997, 126, 43–53; https://doi.org/10.1016/s1381-1169(97)00096-4.Search in Google Scholar

19. Anandababu, K., Muthuramalingam, S., Velusamy, M., Mayilmurugan, R. Catal. Sci. Technol. 2020, 10, 2540–2548; https://doi.org/10.1039/c9cy02601k.Search in Google Scholar

20. Mistri, R., Rahamana, M., Llorca, J., Priolkar, K. R., Colussi, S., Ray, B. C., Gayen, A. J. Mol. Catal. A: Chem. 2014, 390, 187–197; https://doi.org/10.1016/j.molcata.2014.03.024.Search in Google Scholar

21. Muthuramalingam, S., Anandababu, K., Velusamy, M., Mayilmurugan, R. Catal. Sci. Technol. 2019, 9, 5991–6001; https://doi.org/10.1039/c9cy01471c.Search in Google Scholar

22. You, X., Wei, Z., Wang, H., Li, D., Liu, J., Xu, B., Liu, X. RSC Adv. 2014, 4, 61790–61798; https://doi.org/10.1039/c4ra12832j.Search in Google Scholar

23. Tsuji, T., Zaoputra, A. A., Hitomi, Y., Mieda, K., Ogura, T., Shiota, Y., Yoshizawa, K., Sato, H., Kodera, M. Angew. Chem. Int. Ed. 2017, 56, 7779–7782; https://doi.org/10.1002/anie.201702291.Search in Google Scholar PubMed

24. Conde, A., Diaz-Requejo, M. M., Pérez, P. J. Chem. Commun. 2011, 47, 8154–8156; https://doi.org/10.1039/c1cc12804c.Search in Google Scholar PubMed

25. Kumari, S., Muthuramalingam, S., Dhara, A. K., Singh, U., Mayilmurugan, R., Ghosh, K. Dalton Trans. 2020, 49, 13829–13839; https://doi.org/10.1039/d0dt02413a.Search in Google Scholar PubMed

26. Ramu, R., Wanna, W. H., Janmanchi, D., Tsai, Y. F., Liu, C. C., Mou, C. Y., Yu, S. S. F. Mol. Catal. 2017, 441, 114–121; https://doi.org/10.1016/j.mcat.2017.08.006.Search in Google Scholar

27. Yalymov, A. I., Bilyachenko, A. N., Levitsky, M. M., Korlyukov, A. A., Khrustalev, V. N., Shul’pina, L. S., Dorovatovskii, P. V., Es’kova, M. A., Lamaty, F., Bantreil, X., Villemejeanne, B., Martinez, J., Shubina, E., Kozlov, Y., Shul’pin, G. Catalysts 2017, 7, 101–119; https://doi.org/10.3390/catal7040101.Search in Google Scholar

28. Carneiro, L., Silva, A. R. Catal. Sci. Technol. 2016, 6, 8166–8176; https://doi.org/10.1039/c6cy00970k.Search in Google Scholar

29. Vinogradov, M. M., Kozlov, Y. N., Nesterov, D. S., Shul’pina, L. S., Pombeiro, A. J., Shul’pin, G. B. Catal. Sci. Technol. 2014, 4, 3214–3226; https://doi.org/10.1039/c4cy00492b.Search in Google Scholar

30. Sarma, B. B., Carmieli, R., Collauto, A., Efremenko, I., Martin, J. M., Neumann, R. ACS Catal. 2016, 6, 6403–6407; https://doi.org/10.1021/acscatal.6b02083.Search in Google Scholar

31. Li, X., Xue, H., Lin, Q., Yu, A. Appl. Organomet. Chem. 2020, 34, 5606–5616.Search in Google Scholar

32. Dong, Y., Niu, X., Song, W., Wang, D., Chen, L., Yuan, F., Zhu, Y. Catalysts 2016, 6, 74–90; https://doi.org/10.3390/catal6050074.Search in Google Scholar

33. Shijina, A. V., Renuka, N. K. React. Kinet. Catal. Lett. 2009, 98, 139–147; https://doi.org/10.1007/s11144-009-0079-0.Search in Google Scholar

34. Peng, G., Fu, Z., Yin, D., Zhong, S., Yang, Y., Yu, N., Yin, D. A. Catal. Lett. 2007, 118, 270–274; https://doi.org/10.1007/s10562-007-9183-9.Search in Google Scholar

35. Tanarungsun, G., Kiatkittipong, W., Praserthdam, P., Yamada, H., Tagawa, T., Assabumrungrat, S. Catal. Commun. 2008, 9, 1886–1890; https://doi.org/10.1016/j.catcom.2008.03.008.Search in Google Scholar

36. Gu, Y. Y., Zhao, X. H., Zhang, G. R., Ding, H. M., Shan, Y. K. Appl. Catal., A 2007, 328, 150–155; https://doi.org/10.1016/j.apcata.2007.06.002.Search in Google Scholar

37. Jourshabani, M., Badiei, A., Shariatinia, Z., Lashgari, N., Ziarani, G. M. Ind. Eng. Chem. Res. 2016, 55, 3900–3908; https://doi.org/10.1021/acs.iecr.5b04976.Search in Google Scholar

38. Zhang, T., Zhang, D., Han, X., Dong, T., Guo, X., Song, C., Si, R., Liu, W., Liu, Y., Zhao, Z. J. Am. Chem. Soc. 2018, 140, 16936–16940; https://doi.org/10.1021/jacs.8b10703.Search in Google Scholar PubMed

39. Ito, S., Mitarai, A., Hikino, K., Hirama, M., Sasaki, K. J. Org. Chem. 1992, 57, 6937–6941; https://doi.org/10.1021/jo00051a048.Search in Google Scholar

40. Chen, D., Chen, C., Baiyee, Z. M., Shao, Z., Ciucci, F. Chem. Rev. 2015, 115, 9869–9921; https://doi.org/10.1021/acs.chemrev.5b00073.Search in Google Scholar PubMed

41. Cheng, F., Chen, J. Chem. Soc. Rev. 2012, 41, 2172–2192; https://doi.org/10.1039/c1cs15228a.Search in Google Scholar PubMed

42. Ge, X., Sumboja, A., Wuu, D., An, T., Li, B., Goh, F. W. T., Hor, T. S. A., Zong, Y., Liu, Z. ACS Catal. 2015, 5, 4643–4667; https://doi.org/10.1021/acscatal.5b00524.Search in Google Scholar

43. Zhu, J., Li, H., Zhong, L., Xiao, P., Xu, X., Yang, X., Zhao, Z., Li, J. ACS Catal. 2014, 4, 2917–2940; https://doi.org/10.1021/cs500606g.Search in Google Scholar

44. Zhu, H., Zhang, P., Dai, S. ACS Catal. 2015, 5, 6370–6385; https://doi.org/10.1021/acscatal.5b01667.Search in Google Scholar

45. Wang, W., Tadé, M. O., Shao, Z. Chem. Soc. Rev. 2015, 44, 5371–5408; https://doi.org/10.1039/c5cs00113g.Search in Google Scholar PubMed

46. Chandra, P. ChemistrySelect 2021, 6, 7557–7597; https://doi.org/10.1002/slct.202101434.Search in Google Scholar

47. Teixeira, G. F., Junior, E. S., Vilela, R., Zaghete, M. A., Colmati, F. Catalysts 2019, 9, 721–726; https://doi.org/10.3390/catal9090721.Search in Google Scholar

48. Kleineberg, H., Eisenacher, M., Lange, H., Strutz, H., Palkovits, R. Catal. Sci. Technol. 2016, 6, 6057–6065; https://doi.org/10.1039/c5cy01479d.Search in Google Scholar

49. Yamaguchi, S., Okuwa, T., Wada, H., Yamaura, H., Yahiro, H. Res. Chem. Intermed. 2015, 41, 9551–9561; https://doi.org/10.1007/s11164-015-1980-y.Search in Google Scholar

50. Singh, H., Rajput, J. K. J. Mater. Sci. 2018, 53, 3163–3188; https://doi.org/10.1007/s10853-017-1790-2.Search in Google Scholar

51. Mistri, R. Asian J. Chem. 2022, 34, 2489–2498; https://doi.org/10.14233/ajchem.2022.23976.Search in Google Scholar

52. Kawasaki, S., Kamata, K., Hara, M. Chem. Cat. Chem. 2016, 8, 3247–3253; https://doi.org/10.1002/cctc.201600613.Search in Google Scholar

53. Shibata, S., Sugahara, K., Kamata, K., Hara, M. Chem. Commun. 2018, 54, 6772–6775; https://doi.org/10.1039/c8cc02185f.Search in Google Scholar PubMed

54. Marchena, C. L., Pecchi, G. A., Pierella, L. B. Catal. Commun. 2019, 119, 28–32; https://doi.org/10.1016/j.catcom.2018.10.016.Search in Google Scholar

55. Shibata, S., Kamata, K., Hara, M. Catal. Sci. Technol. 2021, 11, 2369–2373; https://doi.org/10.1039/d1cy00245g.Search in Google Scholar

56. Dharmana, T., Naidu, B. N. Asian J. Chem. 2022, 34, 437–442; https://doi.org/10.14233/ajchem.2022.23428.Search in Google Scholar

57. Xue, Y., Xin, H., Xie, W., Wua, P., Li, X. Chem. Commun. 2019, 55, 3363–3366; https://doi.org/10.1039/c9cc00318e.Search in Google Scholar PubMed

58. Zheng, Y., Zhang, R., Zhang, L., Gu, Q., Qiao, Z. A. Angew. Chem. Int. Ed. 2021, 60, 4774–4781; https://doi.org/10.1002/anie.202012416.Search in Google Scholar PubMed

59. Mistri, R., Das, D., Llorca, J., Dominguez, M., Mandal, T. K., Mohanty, P., Ray, B. C., Gayen, A. RSC Adv. 2016, 6, 4469–4477; https://doi.org/10.1039/c5ra22592b.Search in Google Scholar

60. Sushkevich, V. L., Palagin, D., Ranocchiari, M., van Bokhoven, J. A. Science 2017, 356, 523–527; https://doi.org/10.1126/science.aam9035.Search in Google Scholar PubMed

61. Anastas, P., Warner, J. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.Search in Google Scholar

62. Morejudo, S. H., Zanón, R., Escolástico, S., Tirados, I. Y., Fjeld, H. M., Vestre, P. K., Coors, W. G., Martínez, A., Norby, T., Serra, J. M., Kjølseth, C. Science 2016, 353, 563–566; https://doi.org/10.1126/science.aag0274.Search in Google Scholar PubMed

63. Komanoya, T., Kinemura, T., Kita, Y., Kamata, K., Hara, M. J. Am. Chem. Soc. 2017, 139, 11493–11499; https://doi.org/10.1021/jacs.7b04481.Search in Google Scholar PubMed

64. Kanai, S., Nagahara, I., Kita, Y., Kamata, K., Hara, M. Chem. Sci. 2017, 8, 3146–3153; https://doi.org/10.1039/c6sc05642c.Search in Google Scholar PubMed PubMed Central

65. Climent, M. J., Corma, A., Iborra, S. Green Chem. 2014, 16, 516–547; https://doi.org/10.1039/c3gc41492b.Search in Google Scholar

66. Hara, M., Nakajima, K., Kamata, K. Sci. Technol. Adv. Mater. 2015, 16, 034903–034925; https://doi.org/10.1088/1468-6996/16/3/034903.Search in Google Scholar PubMed PubMed Central

67. Alonso, D. M., Wettstein, S. G., Dumesic, J. A. Chem. Soc. Rev. 2012, 41, 8075–8098; https://doi.org/10.1039/c2cs35188a.Search in Google Scholar PubMed

68. Cornils, B., Herrmann, W. A., Beller, M., Paciello, R. Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes, 3rd ed.; Wiley-VCH: Weinheim, 2017.10.1002/9783527651733Search in Google Scholar

69. Besson, M., Gallezot, P., Pinel, C. Chem. Rev. 2014, 114, 1827–1870; https://doi.org/10.1021/cr4002269.Search in Google Scholar PubMed

70. Chandran, R. S., Ford, W. T. J. Chem. Soc., Chem. Commun. 1988, 46, 104–105; https://doi.org/10.1039/c39880000104.Search in Google Scholar

71. Guilhaume, N., Primet, M. J. Catal. 1997, 165, 197–204; https://doi.org/10.1006/jcat.1997.1481.Search in Google Scholar

72. Berger, D., Matei, C., Papa, F., Voicu, G., Fruth, V. Prog. Solid State Chem. 2007, 35, 183–191; https://doi.org/10.1016/j.progsolidstchem.2007.01.001.Search in Google Scholar

73. Stuchinskaya, T. L., Kozhevnikov, I. V. Catal. Commun. 2003, 4, 417–422; https://doi.org/10.1016/s1566-7367(03)00096-7.Search in Google Scholar

74. Ferguson, G., Ajjou, A. N. Tetrahedron Lett. 2003, 44, 9139–9142; https://doi.org/10.1016/j.tetlet.2003.10.052.Search in Google Scholar

75. Kockritz, A., Sebek, M., Dittmar, A., Radnik, J., Bruckner, A., Bentrup, U., Hugl, H., Magerlein, W. J. Mol. Catal. A: Chem. 2006, 246, 85–99; https://doi.org/10.1016/j.molcata.2005.10.020.Search in Google Scholar

76. Peyrovi, M. H., Mahdavi, V., Salehi, M. A., Mahmoodian, R. Catal. Commun. 2005, 6, 476–479; https://doi.org/10.1016/j.catcom.2005.04.010.Search in Google Scholar

77. Choudhary, V. R., Dumbre, D. K. Appl. Catal., A 2010, 375, 252–257; https://doi.org/10.1016/j.apcata.2010.01.007.Search in Google Scholar

78. Sheldon, R. A., Arends, I. W. C. E., Dijkman, A. Catal. Today 2000, 57, 157–166; https://doi.org/10.1016/s0920-5861(99)00317-x.Search in Google Scholar

79. Shiono, M., Kobayashia, K., Nguyen, T. L., Hosoda, K., Kato, T., Ota, K., Dokiya, M. Solid State Ionics 2004, 170, 1–7; https://doi.org/10.1016/j.ssi.2004.02.018.Search in Google Scholar

80. Giebeler, L., Kiebling, D., Wendt, G. Chem. Eng. Technol. 2007, 30, 889–894; https://doi.org/10.1002/ceat.200600306.Search in Google Scholar

81. Sorenson, S. C., Wronkiewicz, J. A., Sis, L. B., Wirtz, G. P. Am. Ceram. Soc. Bull. 1974, 53, 446–449.Search in Google Scholar

82. Behera, G. C., Parida, K. M. Appl. Catal., A 2012, 413, 245–253; https://doi.org/10.1016/j.apcata.2011.11.016.Search in Google Scholar

83. Brunel, D., Fajula, F., Nagy, J. B., Deroide, B., Verhoef, M. J., Veum, L., Peters, J. A., van Bekkum, H. Appl. Catal., A 2001, 213, 73–82; https://doi.org/10.1016/s0926-860x(00)00886-3.Search in Google Scholar

84. Choudhary, V. R., Dumbre, D. K., Uphade, B. S., Narkhede, V. S. J. Mol. Catal. A: Chem. 2004, 215, 129–135; https://doi.org/10.1016/j.molcata.2004.01.009.Search in Google Scholar

85. Merino, N. A., Barbero, B. P., Grange, P., Cadús, L. E. J. Catal. 2005, 231, 232–244; https://doi.org/10.1016/j.jcat.2005.01.003.Search in Google Scholar

86. Pena, M. A., Fierro, J. L. G. Chem. Rev. 2001, 101, 1981–2018; https://doi.org/10.1021/cr980129f.Search in Google Scholar PubMed

87. Royer, S., Berube, F., Kaliaguine, S. Appl. Catal., A 2005, 282, 273–284; https://doi.org/10.1016/j.apcata.2004.12.018.Search in Google Scholar

88. Koponen, M. J., Suvanto, M., Pakkanen, T. A., Kallinen, K., Kinnunen, T. J. J., Haörkönen, M. Solid State Sci. 2005, 7, 7–12; https://doi.org/10.1016/j.solidstatesciences.2004.10.002.Search in Google Scholar

89. Tanarungsun, G., Kiatkittipong, W., Praserthdam, P., Yamada, H., Tagawa, T., Assabumrungrat, S. J. Ind. Eng. Chem. 2008, 14, 596–601.10.1016/j.jiec.2008.04.005Search in Google Scholar

Received: 2023-03-16
Accepted: 2023-06-10
Published Online: 2023-06-27
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0016/html
Scroll to top button