Skip to main content
Log in

Structural Modeling Based on Human–Computer Knowledge Interaction

  • Published:
Applied Geophysics Aims and scope Submit manuscript

Abstract

Building structural models is a foundational step in the exploration of deep subsurface resources, such as oil and gas. However, in some complex surveys, expert cognition of the subsurface geological structures in the area is often incomplete, and the quality of seismic data rapidly deteriorates, which leads to poor structural interpretation and makes structural modeling a time-consuming and laborious task. To address this challenge, a structural modeling method based on human–computer knowledge interaction using knowledge graphs (KGs) is proposed. Initially, a KG of the structural model is established based on the original structural interpretation. Subsequently, it is gradually improved through iterative human–computer interaction to obtain a complete KG. Finally, the KG is used to guide the reconstruction of geological surfaces. In the process of improving the initial KG, humans can provide expertise to computers by editing the KG, and computers can cognize the data through the KG to help humans discover errors or new knowledge in the original structural interpretation. The method was tested on a field dataset and yielded robust and efficient results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bond, C. E., 2015, Uncertainty in structural interpretation: Lessons to be learnt: Journal of Structural Geology, 74, 185–200.

    Article  Google Scholar 

  • Calcagno, P., Courrioux, G., Lopez, S., & Bourgine, B., 2018, How geological architecture helps 3d modelling: 4th meeting of the European 3D GeoModelling Community. Orleans, France.

  • Caumon, G., 2010, Towards stochastic time-varying geological modeling: Mathematical Geosciences, 42, 555–569.

    Article  Google Scholar 

  • Caumon, G., Collon-Drouaillet, P., Le Carlier de Veslud, C., Viseur, S., & Sausse, J., 2009, Surface-based 3d modeling of geological structures: Mathematical geosciences, 41, 927–945.

    Article  Google Scholar 

  • Caumon, G., Lepage, F., Sword, C. H., & Mallet, J.-L., 2004, Building and editing a sealed geological model: Mathematical Geology, 36, 405–424.

    Article  Google Scholar 

  • Cherpeau, N., & Caumon, G., 2015, Stochastic structural modelling in sparse data situations: Petroleum Geoscience, 21, 233–247.

    Article  Google Scholar 

  • Dutta, S., Nayek, P., & Bhattacharya, A., 2017, Neighbor-aware search for approximate labeled graph matching using the chi-square statistics: Proceedings of the 26th International Conference on World Wide Web, 1281–1290.

  • Egenhofer, M. J., & Franzosa, R. D., 1991, Point-set topological spatial relations: International Journal of Geographical Information System, 5, 161–174.

    Article  Google Scholar 

  • Fan, R., Wang, L., Yan, J., Song, W., Zhu, Y., & Chen, X., 2019, Deep learning-based named entity recognition and knowledge graph construction for geological hazards: ISPRS International Journal of Geo-Information, 9, 15.

    Article  Google Scholar 

  • Ge, X., Yang, Y., Chen, J., Li, W., Huang, Z., Zhang, W., & Peng, L., 2022, Disaster prediction knowledge graph based on multi-source spatiotemporal information: Remote Sensing, 14, 1214.

    Article  Google Scholar 

  • Grohe, M., Rattan, G., & Woeginger, G. J., 2018, Graph similarity and approximate isomorphism: arXiv preprint, arXiv:1802.08509.

  • Grose, L., Ailleres, L., Laurent, G., & Jessell, M., 2021, Loopstructural 1.0: time-aware geological modelling: Geoscientific Model Development, 14, 3915–3937.

    Article  Google Scholar 

  • Guo, J., Wu, L., Zhou, W., Li, C., & Li, F., 2018, Section-constrained local geological interface dynamic updating method based on the hrbf surface: Journal of Structural Geology, 107, 64–72.

    Article  Google Scholar 

  • Harp, D. R., & Vesselinov, V. V., 2012, Analysis of hydrogeological structure uncertainty by estimation of hydrogeological acceptance probability of geostatistical models: Advances in Water Resources, 36, 64–74.

    Article  Google Scholar 

  • Hosseini, H., & Bagheri, E., 2021, Learning to rank implicit entities on twitter: Information Processing & Management, 58, 102503.

    Article  Google Scholar 

  • Jacquemyn, C., Jackson, M. D., & Hampson, G. J., 2019, Surface-based geological reservoir modelling using grid-free nurbs curves and surfaces: Mathematical Geosciences, 51, 1–28.

    Article  Google Scholar 

  • Jessell, M., 2021, Current and future limits to automated 3d geological model construction: EGU General Assembly Conference Abstracts, EGU21–632.

  • Jessell, M., Ogarko, V., De Rose, Y., Lindsay, M., Joshi, R., Piechocka, A., Grose, L., De La Varga, M., Ailleres, L., & Pirot, G., 2021, Automated geological map deconstruction for 3d model construction using map2loop 1.0 and map2model 1.0: Geoscientific Model Development, 14, 5063–5092.

    Article  Google Scholar 

  • Laurent, G., Ailleres, L., Grose, L., Caumon, G., Jessell, M., & Armit, R., 2016, Implicit modeling of folds and overprinting deformation: Earth and Planetary Science Letters, 456, 26–38.

    Article  Google Scholar 

  • Lemon, A. M., & Jones, N. L., 2003, Building solid models from boreholes and user-defined cross-sections: Computers & Geosciences, 29, 547–555.

    Article  Google Scholar 

  • Lundstrom, C., Ljung, P., Persson, A., & Ynnerman, A., 2007, Uncertainty visualization in medical volume rendering using probabilistic animation: IEEE transactions on visualization and computer graphics, 13, 1648–1655.

    Article  Google Scholar 

  • Lv, X., Xie, Z., Xu, D., Jin, X., Ma, K., Tao, L., Qiu, Q., & Pan, Y., 2022, Chinese named entity recognition in the geoscience domain based on bert: Earth and Space Science, 9, e2021EA002166.

    Article  Google Scholar 

  • Lyu, M., Ren, B., Wu, B., Tong, D., Ge, S., & Han, S., 2021, A parametric 3d geological modeling method considering stratigraphic interface topology optimization and coding expert knowledge: Engineering Geology, 293, 106300.

    Article  Google Scholar 

  • Ma, X., 2022, Knowledge graph construction and application in geosciences: A review: Computers & Geosciences, 161, 105082.

    Google Scholar 

  • Mastella, L., Perrin, M., Abel, M., Rainaud, J.-F., & Touari, W., 2007, Knowledge management for shared earth modelling: EUROPEC/EAGE Conference and Exhibition. OnePetro volume All Days.

  • McHugh, M. L., 2013, The chi-square test of independence: Biochemia medica, 23, 143–149.

    Article  Google Scholar 

  • Natali, M., Klausen, T. G., & Patel, D., 2014, Sketch-based modelling and visualization of geological deposition: Computers & Geosciences, 67, 40–48.

    Article  Google Scholar 

  • Oliver, M. A., & Webster, R., 1990, Kriging: a method of interpolation for geographical information systems: International Journal of Geographical Information System, 4, 313–332.

    Article  Google Scholar 

  • Perrin, M., & Rainaud, J.-F., 2013, Shared earth modeling: knowledge driven solutions for building and managing subsurface 3D geological models: Editions Technip.

  • Perrin, M., Zhu, B., Rainaud, J.-F., & Schneider, S., 2005, Knowledge-driven applications for geological modeling: Journal of Petroleum Science and Engineering, 47, 89–104.

    Article  Google Scholar 

  • Qian, F., Zhu, Y., Chen, H., Chen, J., Zhao, S., & Zhang, Y., 2022, Reduce unrelated knowledge through attribute collaborative signal for knowledge graph recommendation: Expert Systems with Applications, 201, 117078.

    Article  Google Scholar 

  • Qiu, Q., Xie, Z., Wu, L., & Tao, L., 2020, Automatic spatiotemporal and semantic information extraction from unstructured geoscience reports using text mining techniques: Earth Science Informatics, 13, 1393–1410.

    Article  Google Scholar 

  • Read, T. R., & Cressie, N. A., 2012, Goodness-of-fit statistics for discrete multivariate data: Springer Science & Business Media.

  • Shi, M., 2021, Knowledge graph question and answer system for mechanical intelligent manufacturing based on deep learning: Mathematical Problems in Engineering, 2021, 1–8.

    Google Scholar 

  • Sprague, K. B., & De Kemp, E. A., 2005, Interpretive tools for 3-d structural geological modelling part ii: Surface design from sparse spatial data: GeoInformatica, 9, 5–32.

    Article  Google Scholar 

  • Steiner, T., Verborgh, R., Troncy, R., Gabarro, J., & Van deWalle, R., 2012, Adding realtime coverage to the google knowledge graph: 11th International Semantic Web Conference (ISWC 2012), 65–68.

  • Sun, S., Dustdar, S., Ranjan, R., Morgan, G., Dong, Y., & Wang, L., 2022, Remote sensing image interpretation with semantic graph-based methods: A survey: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 4544–4558.

    Article  Google Scholar 

  • Sylvain, B., Perrin, M., Guiard, N., Lienhardt, P., & Bertrand, Y., 2004, Automatic building of structured geological models: Journal of Computing & Information Science in Engineering, 5, 138–148.

    Google Scholar 

  • Ullmann, J. R., 1976, An algorithm for subgraph isomorphism: Journal of the ACM (JACM), 23, 31–42.

    Article  Google Scholar 

  • Wang, C., Ma, X., Chen, J., & Chen, J., 2018a, Information extraction and knowledge graph construction from geoscience literature: Computers & Geosciences, 112, 112–120.

    Article  Google Scholar 

  • Wang, C., Zhang, Z., Long, Y., & Wang, S., 2018b, Improved hybrid bounding box collision detection algorithm: Journal of System Simulation, 30, 4236.

    Google Scholar 

  • Wang, Z., Qu, H., Wu, Z., Yang, H., & Du, Q., 2016, Formal representation of 3d structural geological models: Computers & Geosciences, 90, 10–23.

    Article  Google Scholar 

  • Wellmann, F., & Caumon, G., 2018, 3-d structural geological models: Concepts, methods, and uncertainties: Advances in Geophysics 59, 1–121.

    Article  Google Scholar 

  • Xiong, C., Power, R., & Callan, J., 2017, Explicit semantic ranking for academic search via knowledge graph embedding: Proceedings of the 26th international conference on world wide web, 1271–1279.

  • Xu, N., & Tian, H., 2009, Wire frame: a reliable approach to build sealed engineering geological models: Computers & Geosciences, 35, 1582–1591.

    Article  Google Scholar 

  • Xu, Y., Gong, Z., Forrest, J. Y.-L., & Herrera-Viedma, E., 2021, Trust propagation and trust network evaluation in social networks based on uncertainty theory: Knowledge-Based Systems, 234, 107610.

    Article  Google Scholar 

  • Zhan, X., Lu, C., & Hu, G., 2021, Event sequence interpretation of structural geological models: A knowledge-based approach: Earth Science Informatics, 14, 99–118.

    Article  Google Scholar 

  • Zhan, X., Lu, C., & Hu, G., 2022, 3d structural modeling for seismic exploration based on knowledge graphs: Geophysics, 87, IM81–IM100.

    Article  Google Scholar 

  • Zhang, C., Hou, X., Pan, M., & Li, Z., 2021, Research on automatic construction method of three-dimensional complex fault model: Minerals, 11, 893.

    Article  Google Scholar 

  • Zhao, X., Chen, F., Hu, S., & Cho, J.-H., 2020, Uncertainty aware semisupervised learning on graph data: Advances in Neural Information Processing Systems, 33, 12827–12836.

    Google Scholar 

  • Zheng, J., Wenqing, P., Anjiang, S., Wenfang, Y., HUANG, L., Xinfeng, N., & Yongjin, Z., 2020, Reservoir geological modeling and significance of cambrian xiaoerblak formation in keping outcrop area, tarim basin, nw china: Petroleum Exploration and Development, 47, 536–547.

    Article  Google Scholar 

  • Zhu, L., Wu, X., Liu, X., & Shang, J., 2004, Introduction and implementation of virtual borehole in the construction of urban 3d strata model: Geography and Geo-Information Science, 20, 26–30.

    Google Scholar 

  • Zhu, Y., Zhou, W., Xu, Y., Liu, J., & Tan, Y., 2017, Intelligent learning for knowledge graph towards geological data: Scientific Programming, 2017, 1–8.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Grant nos. 42130812, 41974147 and 41804162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai Lu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant nos. 42130812, 41974147 and 41804162).

Xianglin Zhang is a PhD student at the University of Electronic Science and Technology of China. Her major is Information and Communication Engineering, and her main research interests are intelligent geological modeling, knowledge graph construction and application, and artificial intelligence in geoscience. Email: xianglin_zhan@163.com

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, X., Li, S., Tang, S. et al. Structural Modeling Based on Human–Computer Knowledge Interaction. Appl. Geophys. (2023). https://doi.org/10.1007/s11770-023-1017-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11770-023-1017-z

Keywords

Navigation