Skip to main content
Log in

Magnesian Basalts of the Medvezhia Caldera: Dominant Magmas and Their Sources, as Exemplified by Menshiy Brat Volcano, Iturup Island, Kuriles

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents new data on the formation conditions of basalts from Menshiy Brat postcaldera volcano in the Medvezhia caldera, Iturup Island. The liquidus mineral assemblage consists of olivine (Fo 85.3–90.1 mol %) and chromium spinel (Cr# = 0.46–0.6), which crystallized at 1090–1170°C and oxygen fugacity at NNO + 0.6 (σ = 0.2) to NNO + 0.2 (σ = 0.14) in the course of the eruption. Data on melt inclusions in the liquidus olivine demonstrate that its parental melts were low-Al2O3 and low-K2O, with up to 15.5 wt % MgO, and with an average H2O content of 5.5 wt %. The newly obtained data on volatile contents in the olivine-hosted melt inclusions suggest that the mafic melts were derived by the partial melting of a peridotitic-rich source with a small admixture of an olivine-free component at 1225°C, under active influence of the slab-derived fluids. These fluids were separated from the subducting slab at 670–705°C and depths of 95–105 km beneath Iturup Island. Our results enhance our understanding of the evolution of basic magmas that serve as a heat and volatile sources during the formation of large calderas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

Notes

  1. Supplementary materials to the Russian and English versions of this paper available at https://elibrary.ru/ and http://link.springer.com/, respectively, present: Supplementary 1, ESM_1.xlsх: chemical analyses of the cores of olivine crystals from basalts of Menshiy Brat volcano; Supplementary 2, ESM_2.xlsх: chemical analysis of liquidus spinel and its host olivine from basalts of Menshiy Brat volcano; Supplementary 3, ESM_3.xlsх: measured and calculated compositions of the glasses of melt inclusions; Supplementary 4, ESM_4.xlsх: CO2 contents in olivine-hosted melt inclusions in sample MD-5 from Menshiy Brat volcano; Supplementary 5, ESM_5.pdf: methodological specifics of the evaluations of H2O concentrations in trapped melts done by different techniques.

REFERENCES

  1. Almeev, R.R., Holtz, F., Koepke, J., et al., The effect of H2O on olivine crystallization in MORB: experimental calibration at 200 MPa, Am. Mineral., 2007, vol. 92, pp. 670–674.

    Article  Google Scholar 

  2. Avdeiko, G.P., Palueva, A.A., and Khleborodova, O.A., Geodynamic conditions of volcanism and magma formation in the Kurile–Kamchatka island-arc system, Petrology, 2006, vol. 14, no. 3, pp. 230–246.

    Article  Google Scholar 

  3. Ballhaus, C., Berry, R.F., and Green, D.H., High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: implications for the oxidation state of the upper mantle, Contrib. Mineral. Petrol., 1991, vol. 107, pp. 27–40.

    Article  Google Scholar 

  4. Beard, J.S. and Lofgren, G.E., Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, 6, 9 kb, J. Petrol., 1991, vol. 32, pp. 365–401.

    Article  Google Scholar 

  5. Blondes, M.S., Brandon, M.T., Reiners, P.W., et al., Generation of forsteritic olivine (Fo 99.8) by subsolidus oxidation in basaltic flows, J. Petrol., 2012, vol. 53, no. 5, pp. 971–984.

    Article  Google Scholar 

  6. Bucholz, C.E., Gaetani, G.A., Behn, M.D., and Shimizu, N., Post entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions, Earth Planet. Sci. Lett., 2013, vol. 374, pp. 145–155.

    Article  Google Scholar 

  7. Chen, Y., Provost, A., Schiano, P., and Cluzel, N., The rate of water loss from olivine-hosted melt inclusions, Contrib. Mineral. Petrol., 2011, vol. 162, pp. 625–636.

    Article  Google Scholar 

  8. Chibisova, M.V., Rybin, A.V., Martynov, Yu.A., and Okrugin, V.M., Chemical composition and mineralogyof basalts of the Men’shii Brat Volcano (Iturup I., Kuril Islands), Vestn. KRAUNTs. Nauki o Zemle, 2009, vol. 13, no. 1, pp. 179–186.

  9. Coogan, L.A., Saunders, A.D., and Wilson, R.N., Aluminumin-olivine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces, Chem. Geol., 2014, vol. 368, pp. 1–10.

    Article  Google Scholar 

  10. Danyushevsky, L.V., Della-Pasqua, F.N., and Sokolov, S., Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications, Contrib. Mineral. Petrol., 2000, vol. 38, pp. 68–83.

    Article  Google Scholar 

  11. Danyushevsky, L.V. and Plechov, P.Y., Petrolog3: integrated software for modeling crystallization processes, Geochem., Geophys., Geosyst., 2011, vol. 12, no. 7, p. Q07021.

    Article  Google Scholar 

  12. Distler, V.V., Yudovskaya, M.A., Znamenskii, V.S., and Chaplygin, I.V., Platinum group elements in modern fumaroles of the Kudryavyi Volcano, Iturup Island, Kuril Island Arc, Dokl. Earth Sci., 2002, vol. 387, no. 2, pp. 975–978.

    Google Scholar 

  13. Eichelberger, J.C. and Izbekov, P., Eruption of andesite triggered by dyke injection: contrasting cases at Karymsky Volcano, Kamchatka and Mount Katmai, Alaska, Phil. Trans. R. Soc., Ser. A, 2000, vol. 358, no. 1770, pp. 1465–1485.

  14. Eremina, T.S., Khubunaya, S.A., Koloskov, A.V., and Moskaleva, S.V., Calc-alkaline and subalkaline basalts and basaltic andesites of the Klyuchevskoy, Kharchinsky, and Ploskii Tolbachik volcanoes (TTI-50): volcanic products of mantle of different depth, Materialy ezhegodnoi konferentsii, posvyashchennoi Dnyu vulkanologa “Vulkanizm i svyazannye s nim protsessy” (Proc. Annual Conference Dedicated to the Volcanologist Day “Volcanism and Related Processes), 2014, pp. 69–82.

  15. Ermakov, V.A. and Semakin, V.P., Geology of the Medvezh’ya Caldera, Iturup Island, Kuril Islands, Dokl. Earth Sci., 1996, vol. 351A, no. 9, pp. 1339–1343.

    Google Scholar 

  16. Ermakov, V.A. and Shteinberg, G.S., Kudryavy Volcano and evolution of the Medvezh’ya Caldera (Iturup Island, Kuril Islands), Vulkanol. Seismol., 1999, no. 3, pp. 19–40.

  17. Falloon, T. and Danyushevsky, L., Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting, J. Petrol., 2000, vol. 41, no. 2, pp. 257–283.

    Article  Google Scholar 

  18. Ford, C.E., Russel, D.G., Graven, J.A., and Fisk, M.R., Olivine liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn, J. Petrol., 1983, vol. 24, pp. 256–265.

    Article  Google Scholar 

  19. Gaetani, G.A., O’Leary, J.A., Shimizu, N., et al., Rapid reequilibration of H2O and oxygen fugacity in olivine hosted melt inclusions, Geology, 2012, vol. 40, pp. 915–918.

    Article  Google Scholar 

  20. Gavrilenko, M., Herzberg, C.,Vidito, C., et al., Calcium-in-olivine geohygrometer and its application to subduction zone magmatism, J. Petrol., 2016, vol. 57, no. 9, pp. 1811–1832.

    Article  Google Scholar 

  21. Gelman, S.E., Deering, G.D., Gutierrez, F.J., and Bachmann, O., Evolution of the Taupo volcanic center, New Zealand: petrological and thermal constraints from the Omega dacite, Contrib. Mineral. Petrol., 2013, vol. 166, pp. 1355–1374.

    Article  Google Scholar 

  22. Gertisser, R. and Keller, J., From basalt to dacite: origin and evolution of the calc-alkaline series of Salina, Aeolian Arc, Italy, Contrib. Mineral. Petrol., 2000, vol. 139, no. 5, pp. 607–626.

    Article  Google Scholar 

  23. Gill, J.B., Orogenic Andesites and Plate Tectonics, Berlin-Heidelberg: Springer-Verlag, 1981.

    Book  Google Scholar 

  24. Grove, T.L., Elkins-Tanton, L.T., Parman, S.W., et al., Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends, Contrib. Mineral. Petrol., 2003, vol. 145, no. 5, pp. 515–533.

    Article  Google Scholar 

  25. Grove, T.L., Till, C.B., and Krawczynski, M.J., The role of H2O in subduction zone magmatism, Ann. Rev. Earth Planet. Sci., 2012, vol. 40, no. 1, pp. 413–439.

    Article  Google Scholar 

  26. Haughton, D.R., Roeder, P.L., and Skinner, J.B., Solubility of sulfur in mafic magmas, Econ. Geol., 1974, vol. 69, no. 4, pp. 451–467.

    Article  Google Scholar 

  27. Hellebrand, E., Snow, J.E., Dick, H.J.B., and Hofmann, A.W., Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites, Nature, 2001, vol. 410, pp. 677–681.

    Article  Google Scholar 

  28. Hermann, J. and Spandler, C.J., Sediment melts at subarc depths: an experimental study, J. Petrol., 2008, vol. 49, pp. 717–740.

    Article  Google Scholar 

  29. Hildreth, W., Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono craters: several contiguous but discrete systems, J. Volcanol. Geotherm. Res., 2004, vol. 136, pp. 169–198.

    Article  Google Scholar 

  30. Hofmann, A.W., Chemical differentiation of the earth: the relationship between mantle, continental crust, and oceanic crust, Earth Planet. Sci. Lett., 1988, vol. 90, pp. 297–314.

    Article  Google Scholar 

  31. Jarosewich, E.J., Nelen, J.A., and Norberg, J.A., Reference samples for electron microprobe analyses, Geostand. Newslett.; J. Geostand. Geoanal., 1980, vol. 4, pp. 43–47.

    Article  Google Scholar 

  32. Jull, M. and Kelemen, P.B., On the conditions for lower crustal convective instability, J. Geophys. Res., 2001, vol. 106, pp. 6423–6446.

    Article  Google Scholar 

  33. Kamenetsky, V.S., Crawford, A.J., and Meffre, S., Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks, J. Petrol., 2001, vol. 42, no. 4, pp. 655–671.

    Article  Google Scholar 

  34. Kamenetsky, V.S., Zelensky, M., Gurenko, A., et al., Silicate–sulfide liquid immiscibility in modern arc basalt (Tolbachik Volcano, Kamchatka): Part II. Composition, liquidus assemblage and fractionation of the silicate melt, Chem. Geol., 2017, vol. 471, pp. 92–110.

    Article  Google Scholar 

  35. Kimura, J.Ic. and Yoshida, T., Contributions of slab fluid, mantle wedge and crust to the origin of Quaternary lavas in the NE Japan arc, J. Petrol., 2006, vol. 47, no. 11, pp. 2185–2232.

    Article  Google Scholar 

  36. Kimura, J.Ic., Modeling chemical geodynamics of subduction zones using the arc basalt simulator version 5, Geosphere, 2017, vol. 13, pp. 992–1025.

    Google Scholar 

  37. Kovalenko, V.I., Naumov, V.B., Tolstykh, M.L., et al., Composition and sources of magmas in Medvezh’ya Caldera (Iturup Island, Southern Kuriles) from a study of melt inclusions, Geochem. Int., 2004, vol. 42, no. 5, pp. 393–413.

    Google Scholar 

  38. Krasheninnikov, S.P., Sobolev, A.V., Batanova, V.G. et al., Experimental testing of olivine–melt equilibrium models at high temperatures, Dokl. Earth Sci., 2017, vol. 475, no. 5. pp. 919–922.

    Article  Google Scholar 

  39. Kremenetsky, A.A. and Chaplygin, I.V., Concentration of rhenium and other rare metals in gases of the Kudryavy Volcano (Iturup Island, Kurile Islands), Dokl. Earth Sci., 2010, vol. 430, no. 3, pp. 114–119.

    Article  Google Scholar 

  40. Kuno, H., High-alumina basalt, J. Petrol., 1960, vol. 1, no. 2, pp. 121–145.

    Article  Google Scholar 

  41. Lange, R.A., The effect of H2O, CO2 and F on the density and viscosity of silicate melts, Volatiles in Magmas, Carrol, M.R. and Holloway, J.R., Mineral Soc. Am., 1994, vol. 30, pp. 331—369.

    Google Scholar 

  42. Leonov, V.L. and Grib, E.N., Strukturnye pozitsii i vulkanizm chetvertichnykh kal’der Kamchatki (Structural Position and Volcanism of Quaternary Caldera), Vladivostok: Dal’nauka, 2004.

  43. Macdonald, R., Hawkesworth, C.J., and Heath, E., The Lesser Antilles volcanic chain: a study in arc magmatism, Earth-Sci. Rev., 2000, vol. 49, pp. 1–76.

    Article  Google Scholar 

  44. Magmaticheskie gornye porody (Igneous Rocks), Moscow: Nauka, 1983, vol. 1.

  45. Mallik, A., Dasgupta, R., Tsuno, K., and Nelson, J., Effects of water, depth and temperature on partial melting of mantle-wedge fluxed by hydrous sediment–melt in subduction zones, Geochem. Cosmochim Acta, 2016, no. 195, pp. 226–243.

  46. Martynov, A.Yu., Martynov, Yu.A., Rybin, A.V., Kimura, J.-I., Role of back-arc tectonics in the origin of subduction magmas: new Sr, Nd, andPb isotope data from Middle Miocene lavas of Kunashir Island (Kurile Island Arc), Russ. Geol. Geophys., 2015, vol. 56, no. 3, pp. 363–378.

    Article  Google Scholar 

  47. Martynov, Y.A., Rybin, A.V., Chibisova, M.V., et al., Basaltic volcanism of Medvezhia Caldera on the Iturup Island of Kurile Isles: impact of regional tectonics on subduction magmatism, Int. Geol. Rev., 2022. https://doi.org/10.1080/00206814.2022.2039885

  48. Mathez, E.A., Sulfur solubility and magmatic sulfides in submarine basalt glass, J. Geophys. Res., 1976, vol. 81, no. 23, pp. 4269–4276.

    Article  Google Scholar 

  49. Mironov, N.L., Tobelko, D.P., Smirnov, S.Z. et al., Estimation of CO2 content in the gas phase of melt inclusions using Raman spectroscopy: case study of inclusions in olivine from the Karymsky Volcano (Kamchatka), Russ. Geol. Geophys., 2020, vol. 61, nos. 5–6, pp. 734-747.

    Article  Google Scholar 

  50. Mironov, N., Portnyagin, M., Botcharnikov, R., et al., Quantification of the CO2 budget and H2O–CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure, Earth Planet. Sci. Lett., 2015, vol. 425, pp. 1–11.

    Article  Google Scholar 

  51. Miyashiro, A., Volcanic rock series in island arcs and active continental margins, Am. J. Sci., 1974, vol. 274, pp. 321–355.

    Article  Google Scholar 

  52. Del Moro, S., Renzulli, A., Landi, P., et al., Unusual lapilli tuff ejecta erupted at Stromboli during the 15 March 2007 explosion shed light on the nature and thermal state of rocks forming the crater system of the volcano, J. Volcanol. Geotherm. Res., 2013, no. 254, pp. 37–52.

  53. Nazarova, D.P., Portnyagin, M.V., Krasheninnikov, S.P., et al., Initial H2O content and conditions of parent magma origin for Gorely Volcano (Southern Kamchatka) estimated by trace element thermobarometry, Dokl. Earth Sci., 2017, vol. 472, no. 1, pp. 100–103.

    Article  Google Scholar 

  54. Nekrylov, N.A., Popov, D.V., Plechov, P.Yu., et al., Garnet–pyroxenite-derived end-member magma type in Kamchatka: evidence from composition of olivine and olivine-hosted melt inclusions in Holocene rocks of Kekuknaisky Volcano, Petrology, 2018, vol. 26, no. 4, pp. 329–350.

    Article  Google Scholar 

  55. Nekrylov, N., Portnyagin, M.V., Kamenetsky, V.S., et al., Chromium spinel in late quaternary volcanic rocks from Kamchatka: implications for spatial compositional variability of subarc mantle and its oxidation state, Lithos, 2019, vol. 322, pp. 212–224.

    Article  Google Scholar 

  56. Nizametdinov, I.R., Kuzmin, D.V., Smirnov, S.Z., et al., Water in parental basaltic magmas of Menshyi Brat Volcano (Iturup Island, Kurile Islands), Dokl. Earth Sci., 2019a, vol. 486, no. 1, pp. 521–524.

    Article  Google Scholar 

  57. Nizametdinov, I.R., Kuzmin, D.V., Smirnov, S.Z., Sekisova, V.S., Renite-bearing association from melt inclusions as indicator of evolution of magnesian basalts of Men’shii Brat Volcano, Iturup I., Materialy konferentsii: Fiziko-khimicheskie faktory petro- i rudogeneza: novye rubezhi (Proc. Conf. Physicochemical Factors of Petro- and Ore Genesis: New Frontiers), Moscow: IGEM RAN, 2019b, pp. 130–132.

  58. Piskunov, B.N., Rybin, A.V., and Sergeev, K.F., Petrogeochemical characteristics of rocks from the Medvezh’ya Caldera, the Iturup Island, Kuril Islands, Dokl. Earth Sci., 1999, vol. 368, no. 7, pp. 989–992.

    Google Scholar 

  59. Plank, T., Cooper, L., and Manning, C.E., Emerging geothermometers for estimating slab surface temperatures, Nature Geosci., 2009, vol. 2, pp. 611–615.

    Article  Google Scholar 

  60. Plank, T., Kelley, K.A., Zimmer, M.M., et al., Why do mafic arc magmas contain ~4 wt. % water on average?, Earth Planet. Sci. Lett., 2013, vol. 364, pp. 168–179.

    Article  Google Scholar 

  61. Plechov, P.Yu., Metody izucheniya flyuidnykh i rasplavnykh vklyuchenii (Methods of Study of Fluid and Melt Inclusions), Moscow: KDU, 2014.

  62. Plechova, A.A., Portnyagin, M.V., andBazanova, L.I., The origin and evolution of the parental magmas of frontal volcanoes in Kamchatka: evidence from magmatic inclusions in olivine from Zhupanovsky Volcano, Geochem. Int., 2011, vol. 49, no. 8, pp. 743–767.

    Article  Google Scholar 

  63. Portnyagin, M.V., Hoernle, K., Plechov, P.Y., et al., Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, CL, F) and trace elements in melt inclusions from the Kamchatka Arc, Earth Planet. Sci. Lett., 2007, vol. 255, pp. 53–69.

    Article  Google Scholar 

  64. Portnyagin, M., Almeev, R., Matveev, S., and Holtz, F., Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma, Earth Planet. Sci. Lett., 2008, vol. 272, pp. 541–552.

    Article  Google Scholar 

  65. Portnyagin, M.V., Duggen, S., Hauff, F., et al., Geochemistry of the Late Holocene rocks from the Tolbachik volcanic field, Kamchatka: quantitative modelling of subduction-related open magmatic systems, J. Volcanol. Geotherm. Res., 2015, vol. 307, pp. 133–155.

    Article  Google Scholar 

  66. Portnyagin, M.V., Mironov, N.L., Botcharnikov, R., et al., Dehydration of melt inclusions in olivine and implications for the origin of silica-undersaturated island-arc melts, Earth Planet. Sci. Lett., 2019, vol. 517, pp. 95–105.

    Article  Google Scholar 

  67. Rustioni, G., Audétat, A., and Keppler, H., Experimental evidence for fluid-induced melting in subduction zones, Geochem. Persp. Lett, 2019, vol. 11, pp. 49–54.

    Article  Google Scholar 

  68. Rybin, A.V., Chibisova, M.V., Smirnov, S.Z., et al., Petrochemical features of volcanic complexes of the Medvezh’ya Caldera (Iturup I., Kuril Islands), Geosist. Perekh. Zon, 2018, vol. 2, no. 4, pp. 377–385.

    Google Scholar 

  69. Sekisova, V.S., Smirnov, S.Z., Kuz’min, D.V., et al., Crust–mantle xenoliths from the Kharchinsky Volcano (Central Kamchatka Depression): mineralogy and petrogenesis, Russ. Geol. Geophys., 2021,vol. 62, no. 3, pp. 339–356.

    Article  Google Scholar 

  70. Shaw, D.M., Trace element fractionation during anatexis, Geochim. Cosmochim. Acta, 1970, vol. 34, pp. 237–243.

    Article  Google Scholar 

  71. Shishkina, T.A., Botcharnikov, R.E., Holtz, F., et al., Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa, Chem. Geol., 2010, vol. 277, pp. 115–125.

    Article  Google Scholar 

  72. Sisson, T.W. and Grove, T.L., Temperatures and H2O contents of low MgO high alumina basalts, Contrib. Mineral. Petrol., 1993, vol. 113, pp. 167–184.

    Article  Google Scholar 

  73. Smirnov, S.Z., Nizametdinov, I.R., Timina, T.Yu., et al., High explosivity of the June 21, 2019 eruption of Raikoke Volcano (Central Kuril Islands); mineralogical and petrological constraints on the pyroclastic materials, J. Volcanol. Geotherm. Res., 2021, vol. 418, Art. 107346.

    Article  Google Scholar 

  74. Sobolev, A.V. and Chaussidon, M., H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle, Earth Planet. Sci. Lett., 1996, vol. 137, pp. 45–55.

    Article  Google Scholar 

  75. Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., et al., Estimating the amount of recycled crust in sources of mantle-derived melts, Science, 2007, vol. 316, pp. 412–417.

    Article  Google Scholar 

  76. Sobolev, A.V., Asafov, E.V., Gurenko, A.A., et al., Komatiites reveal a hydrous Archaean deep-mantle reservoir, Nature, 2016, vol. 531, pp. 628–32.

    Article  Google Scholar 

  77. Sparks, S.R.J., Sigurdsson, H., and Wilson, L., Magma mixing: a mechanism for triggering acid explosive eruptions, Nature, 1977, vol. 267, pp. 315–318.

    Article  Google Scholar 

  78. Stolper, E. and Newman, S., The role of water in the petrogenesis of mariana trough magmas, Earth Planet. Sci. Lett., 1994, vol. 121, pp. 293–325.

    Article  Google Scholar 

  79. Syracuse, E.M., Van Keken, P.E., and Abers, G.E., The global range of subduction zone thermal models, Phys. Earth Planet. Int, 2010, vol. 183, pp. 73–90.

    Article  Google Scholar 

  80. Tamura, Y. and Tatsumi, Y., Remelting of an andesitic crust as a possible origin for rhyolitic magma in oceanic arcs; an example from the izu-bonin arc, J. Petrol., 2002, vol. 43, pp. 1029–1047.

    Article  Google Scholar 

  81. Tobelko, D.P., Portnyagin, M.V., Krasheninnikov, S.P., et al., Compositions and formation conditions of primitive magmas of the Karymsky volcanic center, Kamchatka: evidence from melt inclusions and trace-element thermobarometry, Petrology, 2019, vol. 27, no. 3, pp. 243–264.

    Article  Google Scholar 

  82. Tolstykh, M.L., Naumov, V.B., and Kononkova, N.N., Three types of melt in the basaltic andesite from the Medvezh’ya Caldera, Iturup, Southern Kuril Islands, Geochem. Int., 1997, vol.35, no. 4, pp. 339–345.

    Google Scholar 

  83. Van Keken, P.E., Kiefer, B., and Peacock, S.M., High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle, Geochem., Geophys., Geosyst., 2002, vol. 3, https://doi.org/10.1029/2001GC000256

  84. Yudovskaya, M.A., Tessalina, S., Distler, V.V., et al., Behavior of highly-siderophile elements during magma degassing: a case study at the Kudryavy Volcano, Chem. Geol., 2008, vol. 248, nos. 3–4, pp. 318–341.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank S.P. Krasheninnikov for help with high-temperature experiments on the homogenization of inclusions and L.V. Usova for conducting microprobe analyses. The reviewers A.E. Izokh and N.L. Mironov are thanked for constructive criticism and discussions that allowed us to notably improve the manuscript.

Funding

This study was supported by project 13.1902.21.0018 (agreement 075-15-2020-802) from the Ministry for Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Kuzmin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, D.V., Nizametdinov, I.R., Smirnov, S.Z. et al. Magnesian Basalts of the Medvezhia Caldera: Dominant Magmas and Their Sources, as Exemplified by Menshiy Brat Volcano, Iturup Island, Kuriles. Petrology 31, 279–303 (2023). https://doi.org/10.1134/S0869591123030062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591123030062

Keywords:

Navigation