Skip to main content
Log in

Insight on the mechanism of hexameric Pseudin-4 against bacterial membrane-mimetic environment

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

As an alternative to antibiotics, Antimicrobial Peptides (AMPs) possess unique properties including cationic, amphipathic and their abundance in nature, but the exact characteristics of AMPs against bacterial membranes are still undetermined. To estimate the structural stability and functional activity of AMPs, the Pseudin AMPs (Pse-1, Pse-2, Pse-3, and Pse-4) from Hylid frog species, Pseudis paradoxa, an abundantly discovered source for AMPs were examined. We studied the intra-peptide interactions and thermal denaturation stability of peptides, as well as the geometrical parameters and secondary structure profiles of their conformational trajectories. On this basis, the peptides were screened out and the highly stable peptide, Pse-4 was subjected to membrane simulation in order to observe the changes in membrane curvature formed by Pse-4 insertion. Monomeric Pse-4 was found to initiate the membrane disruption; however, a stable multimeric form of Pse-4 might be competent to counterbalance the helix-coil transition and to resist the hydrophobic membrane environment. Eventually, hexameric Pse-4 on membrane simulation exhibited the hydrogen bond formation with E. coli bacterial membrane and thereby, leading to the formation of membrane spanning pore that allowed the entry of excess water molecules into the membrane shell, thus causing membrane deformation. Our report points out the mechanism of Pse-4 peptide against the bacterial membrane for the first time. Relatively, Pse-4 works on the barrel stave model against E. coli bacterial membrane; hence it might act as a good therapeutic scaffold in the treatment of multi-drug resistant bacterial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Nikaido H (Jun. 2009) Multidrug Resistance in Bacteria. Annu Rev Biochem 78(1):119–146. https://doi.org/10.1146/annurev.biochem.78.082907.145923

  2. Rima M, Rima M, Fajloun Z, Sabatier J-M, Bechinger B, Naas T (2021) “Antimicrobial Peptides: A Potent Alternative to Antibiotics,” Antibiotics, vol. 10, no. 9, p. 1095, Sep. doi: https://doi.org/10.3390/antibiotics10091095

  3. Getahun YA, Ali DA, Taye BW, Alemayehu YA (2022) “Multidrug-Resistant Microbial Therapy Using Antimicrobial Peptides and the CRISPR/Cas9 System,” Vet. Med. Res. Rep, vol. Volume 13, pp. 173–190, Aug. doi: https://doi.org/10.2147/VMRR.S366533

  4. Moretta A et al (2021) “Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields,” Front. Cell. Infect. Microbiol, vol. 11, Accessed: Nov. 28, 2022. [Online]. Available: https://www.frontiersin.org/articles/https://doi.org/10.3389/fcimb.2021.668632

  5. Huan Y, Kong Q, Mou H, Yi H (Oct. 2020) Antimicrobial peptides: classification, design, application and research progress in multiple Fields. Front Microbiol 11:582779. https://doi.org/10.3389/fmicb.2020.582779

  6. Li J, Koh J-J, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW (Feb. 2017) Membrane active antimicrobial peptides: translating mechanistic insights to design. Front Neurosci 11. https://doi.org/10.3389/fnins.2017.00073

  7. Raheem N, Straus SK (Dec. 2019) Mechanisms of action for antimicrobial peptides with Antibacterial and Antibiofilm functions. Front Microbiol 10:2866. https://doi.org/10.3389/fmicb.2019.02866

  8. Chen R, Mark AE (2011) The effect of membrane curvature on the conformation of antimicrobial peptides: implications for binding and the mechanism of action. Eur Biophys J 40(4):545–553. https://doi.org/10.1007/s00249-011-0677-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fernandez DI, Le Brun AP, Whitwell TC, Sani M-A, James M, Separovic F (2012) “The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism,” Phys. Chem. Chem. Phys. PCCP, vol. 14, no. 45, pp. 15739–15751, Dec. doi: https://doi.org/10.1039/c2cp43099a

  10. Li J et al (Mar. 2013) Molecular simulations suggest how a branched antimicrobial peptide perturbs a bacterial membrane and enhances permeability. Biochim Biophys Acta 1828(3):1112–1121. https://doi.org/10.1016/j.bbamem.2012.12.015

  11. Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) “Barrel-Stave Model or Toroidal Model? A Case Study on Melittin Pores,” Biophys. J, vol. 81, no. 3, pp. 1475–1485, Sep. doi: https://doi.org/10.1016/S0006-3495(01)75802-X

  12. Ladram A (2016) Antimicrobial peptides from frog skin biodiversity and therapeutic promises. Front Biosci 21(7):1341–1371. https://doi.org/10.2741/4461

    Article  CAS  Google Scholar 

  13. Varga JFA, Bui-Marinos MP, Katzenback BA (Jan. 2019) Frog skin Innate Immune Defences: sensing and surviving pathogens. Front Immunol 9:3128. https://doi.org/10.3389/fimmu.2018.03128

  14. Rinaldi AC (2002) “Antimicrobial peptides from amphibian skin: an expanding scenario: Commentary,” Curr. Opin. Chem. Biol, vol. 6, no. 6, pp. 799–804, Dec. doi: https://doi.org/10.1016/S1367-5931(02)00401-5

  15. Novković M, Simunić J, Bojović V, Tossi A, Juretić D (May 2012) DADP: the database of anuran defense peptides. Bioinformatics 28(10):1406–1407. https://doi.org/10.1093/bioinformatics/bts141

  16. “DADP (2022) ” http://split4.pmfst.hr/dadp/ (accessed Sep 22,

  17. Olson L, Soto AM, Knoop FC, Conlon JM (2001) “Pseudin-2: An Antimicrobial Peptide with Low Hemolytic Activity from the Skin of the Paradoxical Frog,” Biochem. Biophys. Res. Commun, vol. 288, no. 4, pp. 1001–1005, Nov. doi: https://doi.org/10.1006/bbrc.2001.5884

  18. Pál T, Sonnevend Á, Galadari S, Conlon JM (2005) “Design of potent, non-toxic antimicrobial agents based upon the structure of the frog skin peptide, pseudin-2,” Regul. Pept, vol. 129, no. 1–3, pp. 85–91, Jul. doi: https://doi.org/10.1016/j.regpep.2005.01.015

  19. Abdel-Wahab YHA, Power GJ, Flatt PR, Woodhams DC, Rollins-Smith LA, Conlon JM (2008) “A peptide of the phylloseptin family from the skin of the frog Hylomantis lemur (Phyllomedusinae) with potent in vitro and in vivo insulin-releasing activity,” Peptides, vol. 29, no. 12, pp. 2136–2143, Dec. doi: https://doi.org/10.1016/j.peptides.2008.09.006

  20. Sarmiento BE, Santos LF, Menezes, Schwartz EF (May 2019) Insulin release mechanism modulated by toxins isolated from animal venoms: from Basic Research to Drug Development prospects. Molecules 24(10):1846. https://doi.org/10.3390/molecules24101846

  21. Park S-C, Kim J-Y, Jeong C, Yoo S, Hahm K-S, Park Y (2011) “A plausible mode of action of pseudin-2, an antimicrobial peptide from Pseudis paradoxa,” Biochim. Biophys. Acta BBA - Biomembr, vol. 1808, no. 1, pp. 171–182, Jan. doi: https://doi.org/10.1016/j.bbamem.2010.08.023

  22. Park S-C et al (2020) “Improved Cell Selectivity of Pseudin-2 via Substitution in the Leucine-Zipper Motif: In Vitro and In Vivo Antifungal Activity,” Antibiotics, vol. 9, no. 12, Art. no. 12, doi: https://doi.org/10.3390/antibiotics9120921

  23. Jumper J et al (2021) “Highly accurate protein structure prediction with AlphaFold,” Nature, vol. 596, no. 7873, Art. no. 7873, doi: https://doi.org/10.1038/s41586-021-03819-2

  24. Sievers F et al (2011) “Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega,” Mol. Syst. Biol, vol. 7, no. 1, p. 539, doi: https://doi.org/10.1038/msb.2011.75

  25. Gupta S et al (2013) “In Silico Approach for Predicting Toxicity of Peptides and Proteins,” PLOS ONE, vol. 8, no. 9, p. e73957, doi: https://doi.org/10.1371/journal.pone.0073957

  26. Krieger E, Vriend G (Oct. 2014) YASARA View—molecular graphics for all devices—from smartphones to workstations. Bioinformatics 30(20):2981–2982. https://doi.org/10.1093/bioinformatics/btu426

  27. Gautam B, Maia RT, de Filho RM, Campos M (2020) Energy Minimization. IntechOpen, doi: https://doi.org/10.5772/intechopen.94809

  28. Krieger E, Koraimann G, Vriend G (May 2002) Increasing the precision of comparative models with YASARA NOVA-a self-parameterizing force field. Proteins Struct Funct Bioinforma 47(3):393–402. https://doi.org/10.1002/prot.10104

  29. Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G (2004) “Making optimal use of empirical energy functions: Force-field parameterization in crystal space,” Proteins Struct. Funct. Bioinforma, vol. 57, no. 4, pp. 678–683, Dec. doi: https://doi.org/10.1002/prot.20251

  30. Tina KG, Bhadra R, Srinivasan N (2007) “PIC: Protein Interactions Calculator,” Nucleic Acids Res, vol. 35, no. Web Server, pp. W473–W476, May doi: https://doi.org/10.1093/nar/gkm423

  31. Keating KS, Flores SC, Gerstein MB, Kuhn LA (2009) StoneHinge: Hinge prediction by network analysis of individual protein structures. Protein Sci 18(2):359–371. https://doi.org/10.1002/pro.38

    Article  CAS  PubMed  Google Scholar 

  32. Fisher CK, Stultz CM (Jun. 2011) Constructing ensembles for intrinsically disordered proteins. Curr Opin Struct Biol 21(3):426–431. https://doi.org/10.1016/j.sbi.2011.04.001

  33. “Daniel Seeliger (2022) ” https://www3.mpibpc.mpg.de/groups/de_groot/dseelig/tconcoord.html (accessed Sep 13,

  34. Shruti SR, Rajasekaran R (2019) “Identification of protegrin-1 as a stable and nontoxic scaffold among protegrin family – a computational approach,” J. Biomol. Struct. Dyn, vol. 37, no. 9, pp. 2430–2439, Jun. doi: https://doi.org/10.1080/07391102.2018.1491418

  35. Pedretti A, Mazzolari A, Gervasoni S, Fumagalli L, Vistoli G (2021) “The VEGA suite of programs: an versatile platform for cheminformatics and drug design projects,” Bioinformatics, vol. 37, no. 8, pp. 1174–1175, Apr. doi: https://doi.org/10.1093/bioinformatics/btaa774

  36. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) “GROMACS: Fast, flexible, and free,” J. Comput. Chem, vol. 26, no. 16, pp. 1701–1718, Dec. doi: https://doi.org/10.1002/jcc.20291

  37. Yahyavi M, Falsafi-Zadeh S, Karimi Z, Kalatarian G, Galehdari H (2014) “VMD-SS: A graphical user interface plug-in to calculate the protein secondary structure in VMD program,” Bioinformation, vol. 10, no. 8, pp. 548–550, Aug. doi: https://doi.org/10.6026/97320630010548

  38. Lomize AL, Todd SC, Pogozheva ID (2022) Spatial arrangement of proteins in planar and curved membranes by PPM 3.0. Protein Sci 31(1):209–220. https://doi.org/10.1002/pro.4219

    Article  CAS  PubMed  Google Scholar 

  39. Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL (Jan. 2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40:D370–D376. no. D110.1093/nar/gkr703

  40. Chandra Sekar P, Chandrasekhar G, Rajasekaran R (2021) “Hydrophobic Residues Confer the Helicity and Membrane Permeability of Ocellatin-1 Antimicrobial Peptide Scaffold Towards Therapeutics,” Int. J. Pept. Res. Ther, vol. 27, no. 4, pp. 2459–2470, Dec. doi: https://doi.org/10.1007/s10989-021-10265-1

  41. Floresta G et al (Oct. 2018) A structure- and ligand-based virtual screening of a database of ‘Small’ Marine Natural Products for the identification of ‘Blue’ Sigma-2 receptor ligands. Mar Drugs 16(10):384. https://doi.org/10.3390/md16100384

  42. Mihajlovic M, Lazaridis T (Aug. 2010) Antimicrobial peptides in toroidal and cylindrical pores. Biochim Biophys Acta BBA - Biomembr 1798(8):1485–1493. https://doi.org/10.1016/j.bbamem.2010.04.004

  43. Desta IT, Porter KA, Xia B, Kozakov D, Vajda S (2020) “Performance and Its Limits in Rigid Body Protein-Protein Docking,” Structure, vol. 28, no. 9, pp. 1071–1081.e3, Sep. doi: https://doi.org/10.1016/j.str.2020.06.006

  44. Kozakov D, Brenke R, Comeau SR, Vajda S (2006) An FFT-based protein docking program with pairwise potentials. Proteins Struct Funct Bioinforma 65(2):392–406. https://doi.org/10.1002/prot.21117

    Article  CAS  Google Scholar 

  45. Chuang G-Y, Kozakov D, Brenke R, Comeau SR, Vajda S (2008) “DARS (Decoys As the Reference State) Potentials for Protein-Protein Docking,” Biophys. J, vol. 95, no. 9, pp. 4217–4227, Nov. doi: https://doi.org/10.1529/biophysj.108.135814

  46. Pellegrini-Calace M, Maiwald T, Thornton JM (2009) “PoreWalker: A Novel Tool for the Identification and Characterization of Channels in Transmembrane Proteins from Their Three-Dimensional Structure,” PLoS Comput. Biol, vol. 5, no. 7, p. e1000440, Jul. doi: https://doi.org/10.1371/journal.pcbi.1000440

  47. Rowlett VW et al (Jun. 2017) Impact of membrane phospholipid alterations in Escherichia coli on Cellular function and bacterial stress adaptation. J Bacteriol 199 no. 13, pp. e00849-16. https://doi.org/10.1128/JB.00849-16

  48. Guixà-González R et al (May 2014) MEMBPLUGIN: studying membrane complexity in VMD. Bioinformatics 30(10):1478–1480. https://doi.org/10.1093/bioinformatics/btu037

  49. “gmx msd (2023) ” https://manual.gromacs.org/archive/5.0.7/programs/gmx-msd.html (accessed Jun. 08,

  50. McKay MJ, Afrose F, Koeppe RE, Greathouse DV (Oct. 2018) Helix formation and stability in membranes. Biochim Biophys Acta BBA - Biomembr 1860(10):2108–2117. https://doi.org/10.1016/j.bbamem.2018.02.010

  51. Roy K, Kar S, Das RN (2015) Computational Chemistry. in Understanding the basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment. Elsevier, pp 151–189. doi: https://doi.org/10.1016/B978-0-12-801505-6.00005-3.

  52. Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) “Role of Peptide Hydrophobicity in the Mechanism of Action of α-Helical Antimicrobial Peptides,” Antimicrob. Agents Chemother, vol. 51, no. 4, pp. 1398–1406, Apr. doi: https://doi.org/10.1128/AAC.00925-06

  53. Babu MM (2003) “NCI: a server to identify non-canonical interactions in protein structures,” Nucleic Acids Res, vol. 31, no. 13, pp. 3345–3348, Jul.

  54. Bowie JU (2011) “Membrane Protein Folding: How important are hydrogen bonds?,” Curr. Opin. Struct. Biol, vol. 21, no. 1, pp. 42–49, Feb. doi: https://doi.org/10.1016/j.sbi.2010.10.003

  55. Haddad W (Nov. 2017) Thermodynamics: the unique Universal Science. Entropy 19(11):621. https://doi.org/10.3390/e19110621

  56. Blackstock JC (1989) CHAPTER 4 - amino acids and proteins. In: Blackstock JC (ed) in Guide to Biochemistry. Butterworth-Heinemann, pp 32–52. doi: https://doi.org/10.1016/B978-0-7236-1151-6.50010-8.

  57. Lobanov MYu, Bogatyreva NS, Galzitskaya OV (2008) “Radius of gyration as an indicator of protein structure compactness,” Mol. Biol, vol. 42, no. 4, pp. 623–628, Aug. doi: https://doi.org/10.1134/S0026893308040195

  58. Kufareva I, Abagyan R (2011) “Methods of Protein Structure Comparison,” in Homology Modeling, A. J. W. Orry and R. Abagyan, Eds., in Methods in Molecular Biology, vol. 857. Totowa, NJ: Humana Press, pp. 231–257. doi: https://doi.org/10.1007/978-1-61779-588-6_10

  59. Martínez L (2015) “Automatic Identification of Mobile and Rigid Substructures in Molecular Dynamics Simulations and Fractional Structural Fluctuation Analysis,” PLOS ONE, vol. 10, no. 3, p. e0119264, Mar. doi: https://doi.org/10.1371/journal.pone.0119264

  60. “RMSD/RMSF Analysis | BioChemCoRe (2018) ” https://ctlee.github.io/BioChemCoRe-2018/rmsd-rmsf/ (accessed Oct. 29, 2022)

  61. Ganesan P, Ramalingam R (2019) Investigation of structural stability and functionality of homodimeric gramicidin towards peptide-based drug: a molecular simulation approach. J Cell Biochem 120(4):4903–4911. https://doi.org/10.1002/jcb.27765

    Article  CAS  PubMed  Google Scholar 

  62. Singh NK, Agarwal M, Radhakrishna M “Understanding the helical stability of charged peptides,” Proteins Struct. Funct. Bioinforma, vol. n/a, no. n/a, doi: https://doi.org/10.1002/prot.26427

  63. Bondar A-N, White SH, “HYDROGEN BOND DYNAMICS IN MEMBRANE PROTEIN FUNCTION (Apr. 2012) ” Biochim Biophys Acta 1818(4):942–950. https://doi.org/10.1016/j.bbamem.2011.11.035

  64. Sochocka M, Boratyński J (2011) “[Osmoregulation–an important parameter of bacterial growth],” Postepy Hig. Med. Doswiadczalnej Online, vol. 65, pp. 714–724, Nov. doi: https://doi.org/10.5604/17322693.966604

  65. Sato H, Feix JB (2006) “Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides,” Biochim. Biophys. Acta BBA - Biomembr, vol. 1758, no. 9, pp. 1245–1256, Sep. doi: https://doi.org/10.1016/j.bbamem.2006.02.021

  66. Grage SL, Afonin S, Kara S, Buth G, Ulrich AS (Jun. 2016) Membrane thinning and Thickening Induced by membrane-active amphipathic peptides. Front Cell Dev Biol 4:65. https://doi.org/10.3389/fcell.2016.00065

  67. Campelo F, McMahon HT, Kozlov MM (2008) “The Hydrophobic Insertion Mechanism of Membrane Curvature Generation by Proteins,” Biophys. J, vol. 95, no. 5, pp. 2325–2339, Sep. doi: https://doi.org/10.1529/biophysj.108.133173

  68. Yang PL (2016) “Chapter 14 - Metabolomics and Lipidomics: Yet More Ways Your Health Is Influenced by Fat,” in Viral Pathogenesis (Third Edition), M. G. Katze, M. J. Korth, G. L. Law, and N. Nathanson, Eds., Boston: Academic Press, pp. 181–198. doi: https://doi.org/10.1016/B978-0-12-800964-2.00014-8

  69. Tsai F-C et al (Apr. 2021) Comparing physical mechanisms for membrane curvature-driven sorting of BAR-domain proteins. Soft Matter 17(16):4254–4265. https://doi.org/10.1039/D0SM01573C

  70. Kumar P, Kizhakkedathu JN, Straus SK (2018) “Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo,” Biomolecules, vol. 8, no. 1, Art. no. 1, Mar. doi: https://doi.org/10.3390/biom8010004

Download references

Acknowledgements

The authors thank VIT for providing infrastructure for carrying out this research work.

Author information

Authors and Affiliations

Authors

Contributions

ASV performed research work, analyzed and drafted the manuscript. RR conceptualized the research and oversaw the manuscript.

Corresponding author

Correspondence to R. Rajasekaran.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinutha, A.S., Rajasekaran, R. Insight on the mechanism of hexameric Pseudin-4 against bacterial membrane-mimetic environment. J Comput Aided Mol Des 37, 419–434 (2023). https://doi.org/10.1007/s10822-023-00516-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-023-00516-2

Keywords

Navigation