Semin Respir Crit Care Med 2023; 44(05): 705-718
DOI: 10.1055/s-0043-1770065
Review Article

Pulmonary Physiology and Medicine of Diving

Kay Tetzlaff
1   Department of Sports Medicine, University Hospital of Tuebingen, Tuebingen, Germany
› Author Affiliations

Abstract

Pulmonary physiology is significantly altered during underwater exposure, as immersion of the body and increased ambient pressure elicit profound effects on both the cardiovascular and respiratory systems. Thoracic blood pooling, increased breathing gas pressures, and variations in gas volumes alongside ambient pressure changes put the heart and lungs under stress. Normal physiologic function and fitness of the cardiovascular and respiratory systems are prerequisites to safely cope with the challenges of the underwater environment when freediving, or diving with underwater breathing apparatus. Few physicians are trained to understand the physiology and medicine of diving and how to recognize or manage diving injuries. This article provides an overview of the physiologic challenges to the respiratory system during diving, with or without breathing apparatus, and outlines possible health risks and hazards unique to the underwater environment. The underlying pathologic mechanisms of dive-related injuries are reviewed, with an emphasis on pulmonary physiology and pathophysiology.



Publication History

Article published online:
27 June 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Number of participants in scuba diving in the United States from 2006 to 2020. Accessed April 20, 2023 at: https://www.statista.com/statistics/191304/participants-in-scuba-diving-in-the-us-since-2006/
  • 2 Competitive freediving. Accessed April 20, 2023 at: https://usafreediving.com/competitive-freediving/
  • 3 Tillmans F. ed. DAN Annual Diving Report 2020 Edition - A Report on 2018 Diving Fatalities, Injuries, and Incidents. Durham, NC: Divers Alert Network; 2020
  • 4 Vann RD, Lang MA. eds. Recreational Diving Fatalities. Proceedings of the Divers Alert Network 2010 April 8–10. Workshop. Durham, NC: Divers Alert Network; 2011
  • 5 Bove AA. Diving medicine. Am J Respir Crit Care Med 2014; 189 (12) 1479-1486
  • 6 British Thoracic Society Fitness to Dive Group, Subgroup of the British Thoracic Society Standards of Care Committee. British Thoracic Society guidelines on respiratory aspects of fitness for diving. Thorax 2003; 58 (01) 3-13
  • 7 Arborelius Jr M, Ballidin UI, Lilja B, Lundgren CE. Hemodynamic changes in man during immersion with the head above water. Aerosp Med 1972; 43 (06) 592-598
  • 8 Pendergast DR, Lundgren CE. The underwater environment: cardiopulmonary, thermal, and energetic demands. J Appl Physiol 2009; 106 (01) 276-283
  • 9 Prefaut C, Lupi-h E, Anthonisen NR. Human lung mechanics during water immersion. J Appl Physiol 1976; 40 (03) 320-323
  • 10 Guyatt AR, Newman F, Cinkotai FF, Palmer JI, Thomson ML. Pulmonary diffusing capacity in man during immersion in water. J Appl Physiol 1965; 20 (05) 878-881
  • 11 Foster GE, Sheel AW. The human diving response, its function, and its control. Scand J Med Sci Sports 2005; 15 (01) 3-12
  • 12 Heusser K, Dzamonja G, Tank J. et al. Cardiovascular regulation during apnea in elite divers. Hypertension 2009; 53 (04) 719-724
  • 13 Eichhorn L, Erdfelder F, Kessler F. et al. Influence of apnea-induced hypoxia on catecholamine release and cardiovascular dynamics. Int J Sports Med 2017; 38 (02) 85-91
  • 14 Joulia F, Lemaitre F, Fontanari P, Mille ML, Barthelemy P. Circulatory effects of apnoea in elite breath-hold divers. Acta Physiol (Oxf) 2009; 197 (01) 75-82
  • 15 Eichhorn L, Doerner J, Luetkens JA. et al. Cardiovascular magnetic resonance assessment of acute cardiovascular effects of voluntary apnoea in elite divers. J Cardiovasc Magn Reson 2018; 20 (01) 40
  • 16 Costalat G, Coquart J, Castres I. et al. The oxygen-conserving potential of the diving response: a kinetic-based analysis. J Sports Sci 2017; 35 (07) 678-687
  • 17 Perini R, Tironi A, Gheza A, Butti F, Moia C, Ferretti G. Heart rate and blood pressure time courses during prolonged dry apnoea in breath-hold divers. Eur J Appl Physiol 2008; 104 (01) 1-7
  • 18 Olsen CR, Fanestil DD, Scholander PF. Some effects of apneic underwater diving on blood gases, lactate, and pressure in man. J Appl Physiol 1962; 17: 938-942
  • 19 Scholander PF, Hammel HT, Lemessurier H, Hemmingsen E, Garey W. Circulatory adjustment in pearl divers. J Appl Physiol 1962; 17: 184-190
  • 20 Hansel J, Solleder I, Gfroerer W. et al. Hypoxia and cardiac arrhythmias in breath-hold divers during voluntary immersed breath-holds. Eur J Appl Physiol 2009; 105 (05) 673-678
  • 21 Ferrigno M, Grassi B, Ferretti G. et al. Electrocardiogram during deep breath-hold dives by elite divers. Undersea Biomed Res 1991; 18 (02) 81-91
  • 22 Ferrigno M, Ferretti G, Ellis A. et al. Cardiovascular changes during deep breath-hold dives in a pressure chamber. J Appl Physiol 1997; 83 (04) 1282-1290
  • 23 Lindholm P, Lundgren CEG. The physiology and pathophysiology of human breath-hold diving. J Appl Physiol 2009; 106 (01) 284-292
  • 24 AIDA official World Records History. World Records. Accessed April 20, 2023 at: https://www.aidainternational.org/WorldRecords/History
  • 25 Agostoni E. Limitation to depths of diving mechanics of chest wall. In: Rahn H, Yokoyama T, eds. Physiology of Breath-Hold Diving and the Ama of Japan. Washington, DC: National Academy of Sciences; 1965: 139-145
  • 26 Craig Jr AB. Depth limits of breath hold diving (an example of Fennology). Respir Physiol 1968; 5 (01) 14-22
  • 27 Schaefer KE, Allison RD, Dougherty Jr JHJ. et al. Pulmonary and circulatory adjustments determining the limits of depths in breathhold diving. Science 1968; 162 (3857): 1020-1023
  • 28 Dail CW. “Glossopharyngeal breathing” by paralyzed patients; a preliminary report. Calif Med 1951; 75 (03) 217-218
  • 29 Bach JR, Bianchi C, Vidigal-Lopes M, Turi S, Felisari G. Lung inflation by glossopharyngeal breathing and “air stacking” in Duchenne muscular dystrophy. Am J Phys Med Rehabil 2007; 86 (04) 295-300
  • 30 Bach JR, Tewfik G. Air doping: an exposé on “frog” insufflation in competitive sports. Am J Phys Med Rehabil 2007; 86 (04) 301-303
  • 31 Muth CM, Radermacher P, Pittner A. et al. Arterial blood gases during diving in elite apnea divers. Int J Sports Med 2003; 24 (02) 104-107
  • 32 Nygren-Bonnier M, Gullstrand L, Klefbeck B, Lindholm P. Effects of glossopharyngeal pistoning for lung insufflation in elite swimmers. Med Sci Sports Exerc 2007; 39 (05) 836-841
  • 33 Tetzlaff K, Scholz T, Walterspacher S. et al. Characteristics of the respiratory mechanical and muscle function of competitive breath-hold divers. Eur J Appl Physiol 2008; 103 (04) 469-475
  • 34 Eichinger M, Walterspacher S, Scholz T. et al; Breath-hold Diving Study Group of Baden-Württemberg. Lung hyperinflation: foe or friend?. Eur Respir J 2008; 32 (04) 1113-1116
  • 35 Lindholm P, Nyrén S. Studies on inspiratory and expiratory glossopharyngeal breathing in breath-hold divers employing magnetic resonance imaging and spirometry. Eur J Appl Physiol 2005; 94 (5–6): 646-651
  • 36 Overgaard K, Friis S, Pedersen RB, Lykkeboe G. Influence of lung volume, glossopharyngeal inhalation and P(ET) O2 and P(ET) CO2 on apnea performance in trained breath-hold divers. Eur J Appl Physiol 2006; 97 (02) 158-164
  • 37 Seccombe LM, Rogers PG, Mai N, Wong CK, Kritharides L, Jenkins CR. Features of glossopharyngeal breathing in breath-hold divers. J Appl Physiol 2006; 101 (03) 799-801
  • 38 Loring SH, O'Donnell CR, Butler JP, Lindholm P, Jacobson F, Ferrigno M. Transpulmonary pressures and lung mechanics with glossopharyngeal insufflation and exsufflation beyond normal lung volumes in competitive breath-hold divers. J Appl Physiol 2007; 102 (03) 841-846
  • 39 Seccombe LM, Chung SCS, Jenkins CR. et al. Lung perfusion and chest wall configuration is altered by glossopharyngeal breathing. Eur Respir J 2010; 36 (01) 151-156
  • 40 Nygren-Bonnier M, Lindholm P, Markström A, Skedinger M, Mattsson E, Klefbeck B. Effects of glossopharyngeal pistoning for lung insufflation on vital capacity in healthy women. Am J Phys Med Rehabil 2007; 86 (04) 290-294
  • 41 Schaefer KE, Carey CR. Alveolar pathways during 90-foot, breath-hold dives. Science 1962; 137 (3535): 1051-1052
  • 42 Linér MH, Linnarsson D. Intrapulmonary distribution of alveolar gas exchange during breath-hold diving in humans. J Appl Physiol 1995; 78 (02) 410-416
  • 43 Lindholm P. Loss of motor control and/or loss of consciousness during breath-hold competitions. Int J Sports Med 2007; 28 (04) 295-299
  • 44 Fitz-Clarke JR. Adverse events in competitive breath-hold diving. Undersea Hyperb Med 2006; 33 (01) 55-62
  • 45 Schagatay E, Andersson J. Diving response and apneic time in humans. Undersea Hyperb Med 1998; 25 (01) 13-19
  • 46 Schagatay E, van Kampen M, Emanuelsson S, Holm B. Effects of physical and apnea training on apneic time and the diving response in humans. Eur J Appl Physiol 2000; 82 (03) 161-169
  • 47 Boyd C, Levy A, McProud T, Huang L, Raneses E, Olson C. Centers for Disease Control and Prevention (CDC). Fatal and nonfatal drowning outcomes related to dangerous underwater breath-holding behaviors - New York State, 1988-2011. MMWR Morb Mortal Wkly Rep 2015; 64 (19) 518-521
  • 48 Paulev P. Decompression sickness following repeated breath-hold dives. J Appl Physiol 1965; 20 (05) 1028-1031
  • 49 Kohshi K, Wong RM, Abe H, Katoh T, Okudera T, Mano Y. Neurological manifestations in Japanese Ama divers. Undersea Hyperb Med 2005; 32 (01) 11-20
  • 50 Schagatay E. Predicting performance in competitive apnea diving. Part III: deep diving. Diving Hyperb Med 2011; 41 (04) 216-228
  • 51 Fitz-Clarke JR. Mechanics of airway and alveolar collapse in human breath-hold diving. Respir Physiol Neurobiol 2007; 159 (02) 202-210
  • 52 Tetzlaff K, Schöppenthau H, Schipke JD. Risk of neurological insult in competitive deep breath-hold diving. Int J Sports Physiol Perform 2017; 12 (02) 268-271
  • 53 Schipke JD, Tetzlaff K. Why predominantly neurological decompression sickness in breath-hold divers?. J Appl Physiol 2016; 120 (12) 1474-1477
  • 54 Laitila M, Eskola V. Spontaneous pneumomediastinum in an 11-year-old boy after a shallow breath-hold dive. Diving Hyperb Med 2013; 43 (04) 235-236
  • 55 Jacobson FL, Loring SH, Ferrigno M. Pneumomediastinum after lung packing. Undersea Hyperb Med 2006; 33 (05) 313-316
  • 56 Chung SC, Seccombe LM, Jenkins CR, Frater CJ, Ridley LJ, Peters MJ. Glossopharyngeal insufflation causes lung injury in trained breath-hold divers. Respirology 2010; 15 (05) 813-817
  • 57 Cialoni D, Sponsiello N, Marabotti C. et al. Prevalence of acute respiratory symptoms in breath-hold divers. Undersea Hyperb Med 2012; 39 (04) 837-844
  • 58 Lindholm P, Ekborn A, Oberg D, Gennser M. Pulmonary edema and hemoptysis after breath-hold diving at residual volume. J Appl Physiol 2008; 104 (04) 912-917
  • 59 Strauss MB, Wright PW. Thoracic squeeze diving casualty. Aerosp Med 1971; 42 (06) 673-675
  • 60 Boussuges A, Pinet C, Thomas P, Bergmann E, Sainty JM, Vervloet D. Haemoptysis after breath-hold diving. Eur Respir J 1999; 13 (03) 697-699
  • 61 Kiyan E, Aktas S, Toklu AS. Hemoptysis provoked by voluntary diaphragmatic contractions in breath-hold divers. Chest 2001; 120 (06) 2098-2100
  • 62 Training fundamentals: following recommended dive limits. Accessed April 20, 2023 at: https://scubadiverlife.com/training-fundamentals-following-recommended-dive-limits/
  • 63 Butler BD, Hills BA. The lung as a filter for microbubbles. J Appl Physiol 1979; 47 (03) 537-543
  • 64 Gerriets T, Tetzlaff K, Liceni T. et al. Arteriovenous bubbles following cold water sport dives: relation to right-to-left shunting. Neurology 2000; 55 (11) 1741-1743
  • 65 Carturan D, Boussuges A, Vanuxem P, Bar-Hen A, Burnet H, Gardette B. Ascent rate, age, maximal oxygen uptake, adiposity, and circulating venous bubbles after diving. J Appl Physiol 2002; 93 (04) 1349-1356
  • 66 Dujić Z, Eterović D, Denoble P, Krstacić G, Tocilj J, Gosović S. Effect of a single air dive on pulmonary diffusing capacity in professional divers. J Appl Physiol 1993; 74 (01) 55-61
  • 67 Thorsen E, Risberg J, Segadal K, Hope A. Effects of venous gas microemboli on pulmonary gas transfer function. Undersea Hyperb Med 1995; 22 (04) 347-353
  • 68 Eckenhoff RG, Olstad CS, Carrod G. Human dose-response relationship for decompression and endogenous bubble formation. J Appl Physiol 1990; 69 (03) 914-918
  • 69 Bove AA, Hallenbeck JM, Elliott DH. Circulatory responses to venous air embolism and decompression sickness in dogs. Undersea Biomed Res 1974; 1 (03) 207-220
  • 70 Neuman TS, Spragg RG, Wagner PD, Moser KM. Cardiopulmonary consequences of decompression stress. Respir Physiol 1980; 41 (02) 143-153
  • 71 Peterson BT, Grauer SE, Hyde RW, Ortiz C, Moosavi H, Utell MJ. Response of pulmonary veins to increased intracranial pressure and pulmonary air embolization. J Appl Physiol 1980; 48 (06) 957-964
  • 72 Levin LL, Stewart GJ, Lynch PR, Bove AA. Blood and blood vessel wall changes induced by decompression sickness in dogs. J Appl Physiol 1981; 50 (05) 944-949
  • 73 Ward CA, McCullough D, Fraser WD. Relation between complement activation and susceptibility to decompression sickness. J Appl Physiol 1987; 62 (03) 1160-1166
  • 74 Ohkuda K, Nakahara K, Binder A, Staub NC. Venous air emboli in sheep: reversible increase in lung microvascular permeability. J Appl Physiol 1981; 51 (04) 887-894
  • 75 Buttolph TB, Dick Jr EJ, Toner CB. et al. Cutaneous lesions in swine after decompression: histopathology and ultrastructure. Undersea Hyperb Med 1998; 25 (02) 115-121
  • 76 Hartig F, Reider N, Sojer M. et al. Livedo racemosa - the pathophysiology of decompression-associated cutis marmorata and right/left shunt. Front Physiol 2020; 11: 994
  • 77 Butler BD, Hills BA. Transpulmonary passage of venous air emboli. J Appl Physiol 1985; 59 (02) 543-547
  • 78 Catron PW, Flynn Jr ET, Yaffe L. et al. Morphological and physiological responses of the lungs of dogs to acute decompression. J Appl Physiol 1984; 57 (02) 467-474
  • 79 Vik A, Brubakk AO, Hennessy TR, Jenssen BM, Ekker M, Slørdahl SA. Venous air embolism in swine: transport of gas bubbles through the pulmonary circulation. J Appl Physiol 1990; 69 (01) 237-244
  • 80 Atkins CE, Lehner CE, Beck KA, Dubielzig RR, Nordheim EV, Lanphier EH. Experimental respiratory decompression sickness in sheep. J Appl Physiol 1988; 65 (03) 1163-1171
  • 81 Wirjosemito SA, Touhey JE, Workman WT. Type II altitude decompression sickness (DCS): U.S. Air Force experience with 133 cases. Aviat Space Environ Med 1989; 60 (03) 256-262
  • 82 Muth CM, Shank ES. Gas embolism. N Engl J Med 2000; 342 (07) 476-482
  • 83 Butler BD, Luehr S, Katz J. Venous gas embolism: time course of residual pulmonary intravascular bubbles. Undersea Biomed Res 1989; 16 (01) 21-29
  • 84 Butler BD, Katz J. Vascular pressures and passage of gas emboli through the pulmonary circulation. Undersea Biomed Res 1988; 15 (03) 203-209
  • 85 Vik A, Jenssen BM, Eftedal O, Brubakk AO. Relationship between venous bubbles and hemodynamic responses after decompression in pigs. Undersea Hyperb Med 1993; 20 (03) 233-248
  • 86 Wilmshurst PT, Byrne JC, Webb-Peploe MM. Relation between interatrial shunts and decompression sickness in divers. Lancet 1989; 2 (8675): 1302-1306
  • 87 Moon RE, Camporesi EM, Kisslo JA. Patent foramen ovale and decompression sickness in divers. Lancet 1989; 1 (8637): 513-514
  • 88 Ries S, Knauth M, Kern R. et al. Arterial gas embolism after decompression: correlation with right-to-left shunting. Neurology 1999; 52 (02) 401-404
  • 89 Glen SK, Georgiadis D, Grosset DG, Douglas JDM, Lees KR. Transcranial Doppler ultrasound in commercial air divers: a field study including cases with right-to-left shunting. Undersea Hyperb Med 1995; 22 (02) 129-135
  • 90 Germonpré P, Lafère P, Portier W, Germonpré F-L, Marroni A, Balestra C. Increased risk of decompression sickness when diving with a right-to-left shunt: results of a prospective single-blinded observational study (the “Carotid Doppler” Study). Front Physiol 2021; 12: 763408
  • 91 Bove AA. Risk of decompression sickness with patent foramen ovale. Undersea Hyperb Med 1998; 25 (03) 175-178
  • 92 Torti SR, Billinger M, Schwerzmann M. et al. Risk of decompression illness among 230 divers in relation to the presence and size of patent foramen ovale. Eur Heart J 2004; 25 (12) 1014-1020
  • 93 Honěk J, Šrámek M, Honěk T. et al. Patent foramen ovale closure is effective in divers: long-term results from the DIVE-PFO registry. J Am Coll Cardiol 2020; 76 (09) 1149-1150
  • 94 Reul J, Weis J, Jung A, Willmes K, Thron A. Central nervous system lesions and cervical disc herniations in amateur divers. Lancet 1995; 345 (8962): 1403-1405
  • 95 Knauth M, Ries S, Pohimann S. et al. Cohort study of multiple brain lesions in sport divers: role of a patent foramen ovale. BMJ 1997; 314 (7082): 701-705
  • 96 Schwerzmann M, Seiler C, Lipp E. et al. Relation between directly detected patent foramen ovale and ischemic brain lesions in sport divers. Ann Intern Med 2001; 134 (01) 21-24
  • 97 Cordes P, Keil R, Bartsch T. et al. Neurologic outcome of controlled compressed-air diving. Neurology 2000; 55 (11) 1743-1745
  • 98 Gerriets T, Tetzlaff K, Hutzelmann A. et al. Association between right-to-left shunts and brain lesions in sport divers. Aviat Space Environ Med 2003; 74 (10) 1058-1060
  • 99 Balestra C, Germonpré P. Correlation between patent foramen ovale, cerebral “lesions” and neuropsychometric testing in experienced sports divers: does diving damage the brain?. Front Psychol 2016; 7: 696
  • 100 Slosman DO, De Ribaupierre S, Chicherio C. et al. Negative neurofunctional effects of frequency, depth and environment in recreational scuba diving: the Geneva “memory dive” study. Br J Sports Med 2004; 38 (02) 108-114
  • 101 Tetzlaff K, Friege L, Hutzelmann A, Reuter M, Höll D, Leplow B. Magnetic resonance signal abnormalities and neuropsychological deficits in elderly compressed-air divers. Eur Neurol 1999; 42 (04) 194-199
  • 102 Russi EW. Diving and the risk of barotrauma. Thorax 1998; 53 ( suppl 2): S20-S24
  • 103 Schaffer KE, McNULTY Jr WP, Carey C, Liebow AA. Mechanisms in development of interstitial emphysema and air embolism on decompression from depth. J Appl Physiol 1958; 13 (01) 15-29
  • 104 Malhotra MS, Wright HC. The effects of a raised intrapulmonary pressure on the lungs of fresh unchilled cadavers. J Pathol Bacteriol 1961; 82: 198-202
  • 105 Liebow AA, Stark JE, Vogel J, Schaefer KE. Intrapulmonary air trapping in submarine escape training casualties. U S Armed Forces Med J 1959; 10 (03) 265-289
  • 106 Broome CR, Jarvis LJ, Clark RJ. Pulmonary barotrauma in submarine escape training. Thorax 1994; 49 (02) 186-187
  • 107 Lafère P, Germonpré P, Balestra C. Pulmonary barotrauma in divers during emergency free ascent training: review of 124 cases. Aviat Space Environ Med 2009; 80 (04) 371-375
  • 108 Zaugg M, Kaplan V, Widmer U, Baumann PC, Russi EW. Fatal air embolism in an airplane passenger with a giant intrapulmonary bronchogenic cyst. Am J Respir Crit Care Med 1998; 157 (5, Pt 1): 1686-1689
  • 109 Rudge FW. Altitude-induced arterial gas embolism: a case report. Aviat Space Environ Med 1992; 63 (03) 203-205
  • 110 Rios-Tejada F, Azofra-Garcia J, Valle-Garrido J, Pujante Escudero A. Neurological manifestation of arterial gas embolism following standard altitude chamber flight: a case report. Aviat Space Environ Med 1997; 68 (11) 1025-1028
  • 111 Cable GG, Keeble T, Wilson G. Pulmonary cyst and cerebral arterial gas embolism in a hypobaric chamber: a case report. Aviat Space Environ Med 2000; 71 (02) 172-176
  • 112 Lee CT. Cerebral arterial gas embolism in air force ground maintenance crew–a report of two cases. Aviat Space Environ Med 1999; 70 (07) 698-700
  • 113 Hickey MJ, Zanetti CL. Delayed-onset cerebral arterial gas embolism in a commercial airline mechanic. Aviat Space Environ Med 2003; 74 (09) 977-980
  • 114 Zwillich CW, Pierson DJ, Creagh CE, Sutton FD, Schatz E, Petty TL. Complications of assisted ventilation. A prospective study of 354 consecutive episodes. Am J Med 1974; 57 (02) 161-170
  • 115 Benton PJ, Woodfine JD, Westwood PR. Arterial gas embolism following a 1-meter ascent during helicopter escape training: a case report. Aviat Space Environ Med 1996; 67 (01) 63-64
  • 116 Raymond LW. Pulmonary barotrauma and related events in divers. Chest 1995; 107 (06) 1648-1652
  • 117 Weiss LD, Van Meter KW. Cerebral air embolism in asthmatic scuba divers in a swimming pool. Chest 1995; 107 (06) 1653-1654
  • 118 Mellem H, Emhjellen S, Horgen O. Pulmonary barotrauma and arterial gas embolism caused by an emphysematous bulla in a SCUBA diver. Aviat Space Environ Med 1990; 61 (06) 559-562
  • 119 Reuter M, Tetzlaff K, Warninghoff V, Steffens JC, Bettinghausen E, Heller M. Computed tomography of the chest in diving-related pulmonary barotrauma. Br J Radiol 1997; 70 (833) 440-445
  • 120 Toklu AS, Kiyan E, Aktas S, Cimsit M. Should computed chest tomography be recommended in the medical certification of professional divers? A report of three cases with pulmonary air cysts. Occup Environ Med 2003; 60 (08) 606-608
  • 121 Germonpré P, Balestra C, Pieters T. Influence of scuba diving on asymptomatic isolated pulmonary bullae. Diving Hyperb Med 2008; 38 (04) 206-211
  • 122 Tetzlaff K, Reuter M, Leplow B, Heller M, Bettinghausen E. Risk factors for pulmonary barotrauma in divers. Chest 1997; 112 (03) 654-659
  • 123 Calder IM. Autopsy and experimental observations on factors leading to barotrauma in man. Undersea Biomed Res 1985; 12 (02) 165-182
  • 124 Colebatch HJ, Ng CK. Decreased pulmonary distensibility and pulmonary barotrauma in divers. Respir Physiol 1991; 86 (03) 293-303
  • 125 Benton PJ, Francis TJR, Pethybridge RJ. Spirometric indices and the risk of pulmonary barotrauma in submarine escape training. Undersea Hyperb Med 1999; 26 (04) 213-217
  • 126 Wilmshurst PT, Nuri M, Crowther A, Webb-Peploe MM. Cold-induced pulmonary oedema in scuba divers and swimmers and subsequent development of hypertension. Lancet 1989; 1 (8629): 62-65
  • 127 Pons M, Blickenstorfer D, Oechslin E. et al. Pulmonary oedema in healthy persons during scuba-diving and swimming. Eur Respir J 1995; 8 (05) 762-767
  • 128 Weiler-Ravell D, Shupak A, Goldenberg I. et al. Pulmonary oedema and haemoptysis induced by strenuous swimming. BMJ 1995; 311 (7001): 361-362
  • 129 Miller III CC, Calder-Becker K, Modave F. Swimming-induced pulmonary edema in triathletes. Am J Emerg Med 2010; 28 (08) 941-946
  • 130 Wenger M, Russi EW. Aqua jogging-induced pulmonary oedema. Eur Respir J 2007; 30 (06) 1231-1232
  • 131 Marinovic J, Ljubkovic M, Obad A. et al. Assessment of extravascular lung water and cardiac function in trimix SCUBA diving. Med Sci Sports Exerc 2010; 42 (06) 1054-1061
  • 132 Hampson NB, Dunford RG. Pulmonary edema of scuba divers. Undersea Hyperb Med 1997; 24 (01) 29-33
  • 133 Slade Jr JB, Hattori T, Ray CS, Bove AA, Cianci P. Pulmonary edema associated with scuba diving : case reports and review. Chest 2001; 120 (05) 1686-1694
  • 134 Castagna O, de Maistre S, Schmid B, Caudal D, Regnard J. Immersion pulmonary oedema in a healthy diver not exposed to cold or strenuous exercise. Diving Hyperb Med 2018; 48 (01) 40-44
  • 135 Castagna O, Gempp E, Poyet R. et al. Cardiovascular mechanisms of extravascular lung water accumulation in divers. Am J Cardiol 2017; 119 (06) 929-932
  • 136 Castagna O, Regnard J, Gempp E. et al. The key roles of negative pressure breathing and exercise in the development of interstitial pulmonary edema in professional male SCUBA divers. Sports Med Open 2018; 4 (01) 1
  • 137 Wester TE, Cherry AD, Pollock NW. et al. Effects of head and body cooling on hemodynamics during immersed prone exercise at 1 ATA. J Appl Physiol 2009; 106 (02) 691-700
  • 138 Peacher DF, Pecorella SR, Freiberger JJ. et al. Effects of hyperoxia on ventilation and pulmonary hemodynamics during immersed prone exercise at 4.7 ATA: possible implications for immersion pulmonary edema. J Appl Physiol 2010; 109 (01) 68-78
  • 139 Kovacs G, Berghold A, Scheidl S, Olschewski H. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 2009; 34 (04) 888-894
  • 140 Edmonds C, Lippmann J, Lockley S, Wolfers D. Scuba divers' pulmonary oedema: recurrences and fatalities. Diving Hyperb Med 2012; 42 (01) 40-44
  • 141 Moon RE, Martina SD, Peacher DF. et al. Swimming-induced pulmonary edema: pathophysiology and risk reduction with sildenafil. Circulation 2016; 133 (10) 988-996
  • 142 Adir Y, Shupak A, Gil A. et al. Swimming-induced pulmonary edema: clinical presentation and serial lung function. Chest 2004; 126 (02) 394-399
  • 143 Smith R, Ormerod JOM, Sabharwal N, Kipps C. Swimming-induced pulmonary edema: current perspectives. Open Access J Sports Med 2018; 9: 131-137
  • 144 Hårdstedt M, Seiler C, Kristiansson L, Lundeqvist D, Klingberg C, Braman Eriksson A. Swimming-induced pulmonary edema: diagnostic criteria validated by lung ultrasound. Chest 2020; 158 (04) 1586-1595
  • 145 Volk C, Spiro J, Boswell G. et al. Incidence and impact of swimming-induced pulmonary edema on navy seal candidates. Chest 2021; 159 (05) 1934-1941
  • 146 Hårdstedt M, Kristiansson L, Seiler C, Braman Eriksson A, Sundh J. Incidence of swimming-induced pulmonary edema: a cohort study based on 47,600 open-water swimming distances. Chest 2021; 160 (05) 1789-1798