Skip to main content
Log in

Snapshot averaged Matrix Pencil Method (SAM) for direction of arrival estimation

  • Research
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The estimation of the direction of electromagnetic (EM) waves from a radio source using electrically short antennas is one of the challenging problems in the field of radio astronomy. In this paper we have developed an algorithm which performs better in direction and polarization estimations than the existing algorithms. Our proposed algorithm Snapshot Averaged Matrix Pencil Method (SAM) is a modification to the existing Matrix Pencil Method (MPM) based Direction of Arrival (DoA) algorithm. In general, MPM estimates DoA of the incoherent EM waves in the spectra using unitary transformations and least square method (LSM). Our proposed SAM modification is made in context to the proposed Space Electric and Magnetic Sensor (SEAMS) mission to study the radio universe below 16 MHz. SAM introduces a snapshot averaging method to improve the incoherent frequency estimation thereby improving the accuracy of DoA estimation. It can also detect polarization to differentiate between Right Hand Circular Polarlization (RHCP), Right Hand Elliptical Polarlization (RHEP), Left Hand Circular Polarlization (LHCP), Left Hand Elliptical Polarlization (LHEP) and Linear Polarlization (LP). This paper discusses the formalism of SAM and shows the initial results of a scaled version of a DoA experiment at a resonant frequency of \(\sim \)72 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. \(35.3^\circ \) is the angle between the each monopole and the ground plane. This is derived by equating all the direction cosines of the monopoles.

  2. Here the coordinate setting is such that each orthogonal monopoles subtends an angle of \(35.3^\circ \) with the ground plane (x-y plane) and one can consider the new locations of the monopoles as the new local coordinates; then the relationship between the local and the reference coordinate is given by Eq. (8).

  3. The SVR factor is the summation of the ratio between the consecutive values of the eigen values obtained from Singular value decomposition (SVD). This is a good measure to test the performance of the algorithm because the order of eigen values in the SVD are arranged from the most prominent feature in the signal to least prominent feature. If there are a few incoherent waves incident then the change observed in the consecutive eigen values will be abrupt or steep. If the ratio between the consecutive eigenvalues is high, it means that the signal can be detected easily.

  4. The url - “https://drive.google.com/file/d/1lldWOl5q1jK_3br4wBW0qT0y9olMdE8q/view?usp=sharing" contains a video showing the phase shift in the received signal if the source is mobile.

References

  1. Alexander J.K., Brown L.W., Clark T.A., et al.: The spectrum of the cosmic radio background between 0.4 and 6.5 MHz. Astrophys. J. Lett., 157, 163 (1969). https://doi.org/10.1086/180411

  2. Alexander J.K., Kaiser M.BergmanL., Novaco J.C., et al.: Scientific instrumentation of the Radio-Astronomy-Explorer-2 satellite. Astro. Astrophys., 40(4), 365–371 (1975)

  3. Baan W.: SURO-LC: a space-based ultra-long wavelength radio observatory. PoS Antikythera and SKA:045 (2013). https://doi.org/10.22323/1.170.0045

  4. Balanis C.A.: Antenna theory: analysis and design, 4th edn. Wiley- Interscience (2016)

  5. Bentum M., Boonstra A.-J.: The rfi situation for a space-based low-frequency radio astronomy instrument. In: 2016 Radio Frequency Interference (RFI), pp. 1–6 (2016). https://doi.org/10.1109/RFINT.2016.7833521

  6. Bentum, M.J., Verma, M.K., Rajan, R.T., Boonstra, A.J., Verhoeven, C.J.M., Gill, E.K.A., van der Veen, A.J., Falcke, H., Wolt, M.K., Monna, B., et al.: A roadmap towards a space-based radio telescope for ultra-low frequency radio astronomy. Adv. Space Res. 65(2), 856–867 (2020). https://doi.org/10.1016/j.asr.2019.09.007

    Article  ADS  Google Scholar 

  7. Bentum M.J.: The search for exoplanets using ultra-long wavelength radio astronomy. In: 2017 IEEE Aerospace Conference, pp. 1–7 (2017). https://doi.org/10.1109/AERO.2017.7943778

  8. Bentum M.J.: Algorithms for direct radio detections of exoplanets in the neighbourhood of radiating host stars. In: 2018 IEEE Aerospace Conference, pp. 1–7 (2018). https://doi.org/10.1109/AERO.2018.8396590

  9. Bentum M.J., Boonstra A.-J., Baan W.: Space-based ultra-long wavelength radio astronomy - an overview of today’s initiatives. In: 2011 XXXth URSI General Assembly and Scientific Symposium, pp. 1–4 (2011). https://doi.org/10.1109/URSIGASS.2011.6051209

  10. Bentum M.J., Boonstra A.J., Horlings W., et al.: The radio environment for a space-based low-frequency radio astronomy instrument. In: 2019 IEEE Aerospace Conference, pp. 1–7, (2019). https://doi.org/10.1109/AERO.2019.8741975

  11. Bergman J.E.S., Blott R.J., Forbes A.B., et al.: FIRST explorer – an innovative low-cost passive formation-flying system. arXiv e-prints, 0911–0991 (2009). arXiv:0911.0991 [astro-ph.IM]

  12. Borade, R., Gharpure, D., Ananthakrishnan, S.: Design and implementation of data acquisition and analysis system for SEAPS. In Computational Mathematics, Nanoelectronics, and Astrophysics: CMNA 2018, 64–72 (2018). https://doi.org/10.1007/978-981-15-9708-4_5

    Article  Google Scholar 

  13. Borade, R., George, G.N., Gharpure, D.C.: FPGA based data acquisition and processing system for space electric and magnetic sensors (SEAMS). AIP Conf. Proc. 2335(1), 030005 (2021). https://doi.org/10.1063/5.0043435

    Article  Google Scholar 

  14. Brown, L.W.: The Galactic Radio Spectrum Between 130 and 26OOkHz. Astrophys. J. 180, 359–370 (1973). https://doi.org/10.1086/151968

    Article  ADS  Google Scholar 

  15. Burns J., Hallinan G., Lux J., et al.: FARSIDE: a low radio frequency interferometric array on the lunar farside. In: Bulletin of the American Astronomical Society, p. 178 (2019a)

  16. Burns J.O., Bale S., Bradley R.F.: Dark cosmology: investigating dark matter and exotic physics using the Redshifted 21-cm Global Signal with the Dark Ages Polarimeter Pathfinder (DAPPER). In: American Astronomical Society Meeting Abstracts #234. American Astronomical Society Meeting Abstracts, pp. 212–02 (2019b)

  17. Carozzi, T., Karlsson, R., Bergman, J.: Parameters characterizing electromagnetic wave polarization. Phys. Rev. E 61, 2024–2028 (2000). https://doi.org/10.1103/PhysRevE.61.2024

    Article  ADS  Google Scholar 

  18. Cecconi, B.: Influence of an extended source on goniopolarimetry (or direction finding) with cassini and solar terrestrial relations observatory radio receivers. Radio Sci. 42(2), 2003 (2007). https://doi.org/10.1029/2006RS003458

    Article  ADS  Google Scholar 

  19. Cecconi, B., Zarka, P.: Direction finding and antenna calibration through analytical inversion of radio measurements performed using a system of two or three electric dipole antennas on a three-axis stabilized spacecraft. Radio Sci. 40(3), 3003 (2005). https://doi.org/10.1029/2004RS003070

    Article  ADS  Google Scholar 

  20. Cecconi B., Zarka P., Kurth W.S.: SKR polarization and source localization with the Cassini/RPWS/HFR Instrument: First Results. In: Planetary Radio Emissions VI, pp. 37–49 (2006) https://doi.org/10.1553/0x001231b9

  21. Chen L., Aminaei A., Falcke H., et al.: Optimized estimation of the direction of arrival with single tripole antenna. In: 2010 Loughborough Antennas Propagation Conference, pp. 93–96 (2010). https://doi.org/10.1109/LAPC.2010.5666797

  22. Chen L., Falcke H., Ping J., et al.: Development of the Netherlands - China Low Frequency Explorer (NCLE). In: 42nd COSPAR Scientific Assembly, pp. B3.1–26-18 (2018)

  23. Daldorff L.K.S., Turaga D.S., Verscheure O., et al.: Direction of arrival estimation using single tripole radio antenna. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2009, 19-24 April 2009, Taipei, Taiwan, pp. 2149–2152 (2009). https://doi.org/10.1109/ICASSP.2009.4960042

  24. Dvorsky, M., Qaseer, M.T.A., Zoughi, R.: Detection and orientation estimation of short cracks using circularly polarized microwave sar imaging. IEEE Trans. Instrument. Meas. 69(9), 7252–7263 (2020). https://doi.org/10.1109/TIM.2020.2978317

    Article  ADS  Google Scholar 

  25. Egido, A., Caparrini, M., Ruffini, G., et al.: Global navigation satellite systems reflectometry as a remote sensing tool for agriculture. Remote Sensing 4(8), 2356–2372 (2012). https://doi.org/10.3390/rs4082356

    Article  ADS  Google Scholar 

  26. Gentilho, E., Scalassara, P.R., Abrão, T.: Direction of arrival estimation methods: a performance complexity tradeoff perspective. J. Signal Process. Syst. 92(2), 239–256 (2019). https://doi.org/10.1007/s11265-019-01467-4

    Article  Google Scholar 

  27. Gurvits, L.I.: Space VLBI: from first ideas to operational missions. Adv. Space Res. 65(2), 868–876 (2020). https://doi.org/10.1016/j.asr.2019.05.042

    Article  ADS  Google Scholar 

  28. Kanjilal, P., Palit, S.: On multiple pattern extraction using singular value decomposition. IEEE Trans. Signal Process. 43(6), 1536–1540 (1995). https://doi.org/10.1109/78.388873

    Article  ADS  Google Scholar 

  29. Kurth, W.S., Baumback, M.M., Gurnett, D.A.: Direction-finding measurements of auroral kilometric radiation. J. Geophys. Res. 80(19), 2764 (1975). https://doi.org/10.1029/JA080i019p02764

    Article  ADS  Google Scholar 

  30. Lazio T.J.W., Brisken W., Bouman K., et al.: Space VLBI 2020: science and technology futures conference summary, (2020). arXiv:2005.12767 [astro-ph.IM]

  31. Lecacheux, A.: Direction finding of a radiosource of unknown polarization with short electric anten- nas on a spacecraft. Astro. Astrophys. 70, 701 (1978)

    ADS  Google Scholar 

  32. Nehorai, A., Paldi, E.: Vector-sensor array processing for electromagnetic source localization. IEEE Trans. Signal Process. 42(2), 376–398 (1994). https://doi.org/10.1109/78.275610

    Article  ADS  Google Scholar 

  33. Nordholt, E., Van Willigen, D.: A new approach to active antenna design. IEEE Trans. Antennas Propagation 28(6), 904–910 (1980). https://doi.org/10.1109/TAP.1980.1142418

    Article  ADS  Google Scholar 

  34. Rajan, R.T., Boonstra, A.-J., Bentum, M., et al.: Space-based aperture array for ultra-long wavelength radio astronomy. Exp. Astro. 41(1–2), 271–306 (2016). https://doi.org/10.1007/s10686-015-9486-6

    Article  ADS  Google Scholar 

  35. Roy R., Paulraj A., Kailath T.: Direction-of-arrival estimation by subspace rotation methods - esprit. In: ICASSP ’86. IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 2495–2498 (1986). https://doi.org/10.1109/ICASSP.1986.1168673

  36. Rucker H.O., Macher W., Albrecht S.: Experimental and theoretical investigations on the Cassini RPWS antennas. In: Planetary Radio Emission IV, pp. 327–337 (1997)

  37. Sarkar, T.K., Pereira, O.: Using the matrix pencil method to estimate the parameters of a sum of complex exponentials. IEEE Antennas Propagation Mag. 37(1), 48–55 (1995). https://doi.org/10.1109/74.370583

    Article  ADS  Google Scholar 

  38. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propagation 34(3), 276–280 (1986). https://doi.org/10.1109/TAP.1986.1143830

    Article  ADS  Google Scholar 

  39. Shkolnik, E.L.: On the verge of an astronomy CubeSat revolution. Nature Astronomy 2, 374–378 (2018). https://doi.org/10.1038/s41550-018-0438-8

    Article  ADS  Google Scholar 

  40. Tanti H.A., Datta A.: Validation of direction of arrival with orthogonal tridipole antenna for SEAMS. In: 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), pp. 312–315 (2021) https://doi.org/10.1109/InCAP52216.2021.9726500

  41. Toledo-Redondo S., Parrot M., Salinas A.: Variation of the first cut-off frequency of the earth-ionosphere waveguide observed by demeter. J. Geophys. Res. Space Phys., 117(A4), (2012). https://doi.org/10.1029/2011JA017400

  42. Walker J.L., Hoeber C.: Technical challenges of integration of space and terrestrial systems. Springer New York, New York, NY, pp. 461–506 (2013). https://doi.org/10.1007/978-1-4419-7671-0_22

  43. Warwick, J.W.: Power spectrum of electrical discharges seen on earth and at Saturn. J. Geophys. Res. 94(A7), 8757–8768 (1989). https://doi.org/10.1029/JA094iA07p08757

    Article  ADS  Google Scholar 

  44. Waweru N.P., Konditi D., Langat P.K.: Performance analysis of music, root-music and esprit doa estimation algorithm. World Acad. Sci. Eng. Technol. Int. J. Electric. Comput. Ener. Electron. Commun. Eng., 8, 209–216 (2014)

  45. Weiler K.W.: The promise of long wavelength radio astronomy. Washington DC Amer. Geophys. Union Geophys. Monograph Series, 119, 243–255 (2000). https://doi.org/10.1029/GM119p0243

  46. Wilson, T.L., Rohlfs, K., Hüttemeister, S.: Tools of radio astronomy (2013). https://doi.org/10.1007/978-3-642-39950-3

    Article  ADS  Google Scholar 

  47. Xu, J., Xu, X., Wang, J., et al.: The relaxation of reconnected open magnetic field lines in the earth’s magnetosphere. Astrophysical J. 900(1), 52 (2020). https://doi.org/10.3847/1538-4357/aba590

    Article  ADS  Google Scholar 

  48. Yilmazer, N., Koh, J., Sarkar, T.K.: Utilization of a unitary transform for efficient computation in the matrix pencil method to find the direction of arrival. IEEE Trans. Antennas Propagation 54(1), 175–181 (2006). https://doi.org/10.1109/TAP.2005.861567

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Zarka, P.: Plasma interactions of exoplanets with their parent star and associated radio emissions. Planetary Space Sci. 55(5), 598–617 (2007). https://doi.org/10.1016/j.pss.2006.05.045

    Article  ADS  Google Scholar 

Download references

Acknowledgements

H.A.T. acknowledges the valuable discussions with Mr. Atharva Kulkarni (SPPU) regarding the SEAMS payload design and electronics and with Mr. Krishna Makhija (NRAO) regarding the CST simulations. Authors are thankful to Department of Electronic Science, SPPU (specially Prof D. Gharpure) for its support right from the beginning of this project (2017). Authors are thankful to the entire team of the SEAMS project. H.A.T. is thankful to Mr. Archisman Guha (IIT Indore) and Mr. Abhijeet Dutta (IIT Indore) for their support in DoA experiment. H.A.T. is thankful to research scholars Ms. Aishrila Majumder (IIT Indore), Ms. Deepthi Ayyagari (IIT Indore) and Mr. Sarvesh Mangla (IIT Indore) for their technical suggestions while drafting this manuscript. Authors also thank Dr. C. Bhatacharya for his critical comments.

Funding

The corresponding author thanks Indian Institute of Technology Indore for providing Teaching Assistant-ship grant to pursue the research in the field of Low frequency Astronomy.

Author information

Authors and Affiliations

Authors

Contributions

In the initial stages of the work all authors contributed towards conceptualizing and formulation of the methodology and practical tests. The author Harsha Avinash Tanti contributed towards algorithm development, simulations, testing, and was a major contributor in writing the manuscript. Authors Abhirup Datta and S. Ananthakrishnan reviewed and revised the manuscript.

Corresponding author

Correspondence to Harsha Avinash Tanti.

Ethics declarations

Conflicts of interest

This manuscript has not been published and is not under consideration for publication elsewhere. We have no conflicts of interest to disclose.

Additional information

Harsha Avinash Tanti, Abhirup Datta and S. Ananthakrishnan have contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 5889 KB)

Appendices

Appendix A: Phase contamination by electronic components

In circuit theory any receiving antenna can be viewed as a independent voltage source with a source impedance called antenna impedance or radiation resistance [4]. Figure 15 is the circuit equivalent diagram of an receiving antenna with a load resistance of 50 \(\Omega \).

Fig. 15
figure 15

Receiving antenna circuit equivalent. \(V_{RX}\) is the voltage received by the antenna, \(Z_{ANT}\) is the intrinsic impedance or radiation resistance of the antenna, R is the load resistance of 50 \(\Omega \), and \(V_{out}\) voltage across the load

Since, the voltage received (\(V_{RX}\)) by the antenna is due to electric field of EM wave then, \(V_{RX}\,=\,h_{eff}\textbf{E}\) where \(h_{eff}\) is the effective height of the antenna and \(\textbf{E}\) is the electric field present in the EM wave. Using the plane wave consideration the electric field component can be written as \(\textbf{E}\,=\,E_0 e^{j(\textbf{k}\cdot \textbf{r} - \omega t)}\) here, \(\omega \,=\,2\pi f\). Thus, the voltage received can be written as following:

$$\begin{aligned} V_{RX} = h_{eff}E_0 e^{j\textbf{k}\cdot \textbf{r}} e^{-j \omega t} = A e^{-j \omega t} \end{aligned}$$
(A1)

Using Eq. (A1) and circuit in Fig. 15 the received signal \(V_{out}\) can be written as

$$\begin{aligned} V_{out} = \frac{V_{RX}\times 50}{50+Z_{ANT}} \end{aligned}$$
(A2)

As impedance comprises of resistive (R) and reactive component thus antenna impedance can be written as \(Z_{ANT}\,=\,R_{ANT}+jX_{ANT}\). Considering the antenna impedance and Eq. (A2) on can observe analytically how phase is being modified due to the impedance in Eq. (A3).

$$\begin{aligned} V_{out} = \frac{50 A}{\sqrt{R_{ANT}^2+50^2}} e^{-j[wt + tan^{-1}({X_{ANT}/(R_{ANT}+50)})]} \end{aligned}$$
(A3)

In case of addition of several circuit components either in series or in parallel, the antenna impedance \(Z_{ANT}\) in Eq. (A3) has to be replaced by the effective impedance of the circuit also known as the Thevenin’s equivalent.

Appendix B: Matrix pencil method

The Matrix Pencil method is used to obtain the best estimates since it interacts directly with the data instead of generating a co-variance matrix, reducing computer complexity [48]. Eq. (6) is used to generate a Hankel matrix in order to estimate N and \(\omega ^n\).

$$\begin{aligned} \Lambda = \begin{bmatrix} S(0) &{} S(1) &{} \cdots &{} S(L)\\ S(1) &{} S(2) &{} \cdots &{} S(L+1)\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ S(M-L-1) &{} S(M-L) &{} \cdots &{} S(M-1) \end{bmatrix}_{(M-L) \times (L+1)} \end{aligned}$$

where, L is selected between (M/3, M/2] for optimum performance and is known as the pencil parameter [37]; M is the total sample length. The real matrix(\(\Lambda _R\)) is computed using a Unitary matrix transformation [37] ( \(\Lambda _R = U^\dagger [\Lambda \mid \Pi _{M-L} \Lambda ^* \Pi _{L+1}]U\); where, \(^\dagger \) represents hermitian conjugate and U is the unitary matrix [23]) and the complex number matrix \(\Lambda \). Later, an estimate of the singular values of \(\Lambda _R\) is generated using SVD formulation. Matrix \(A_s\) consisting of N largest singular vectors of \(\Lambda _R\) is estimated by performing a thresholding operation on the normalized Eigen value i.e., \(\sigma _i/\sigma _{\max }\). N generalized singular values are then calculated using an unitary transformation (\(-[Re(U^\dagger J_1 U)A_s]^{-1}\cdot Im(U^\dagger J_1 U)A_s\)) which are, \(\psi _1, \psi _2,\cdots ,\psi _N\). Also, N incoherent frequencies are calculated by \(\omega ^n = 2arctan(\psi _n)/\delta \) for \(n = 1,2,\cdots ,N\) [21, 23, 40].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanti, H.A., Datta, A. & Ananthakrishnan, S. Snapshot averaged Matrix Pencil Method (SAM) for direction of arrival estimation. Exp Astron 56, 267–292 (2023). https://doi.org/10.1007/s10686-023-09897-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-023-09897-6

Keywords

Navigation