Skip to main content
Log in

Assessing the performance of docking, FEP, and MM/GBSA methods on a series of KLK6 inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

A Correction to this article was published on 22 July 2023

This article has been updated

Abstract

Kallikrein 6 (KLK6) is an attractive drug target for the treatment of neurological diseases and for various cancers. Herein, we explore the accuracy and efficiency of different computational methods and protocols to predict the free energy of binding (ΔGbind) for a series of 49 inhibitors of KLK6. We found that the performance of the methods varied strongly with the tested system. For only one of the three KLK6 datasets, the docking scores obtained with rDock were in good agreement (R2 ≥ 0.5) with experimental values of ΔGbind. A similar result was obtained with MM/GBSA (using the ff14SB force field) calculations based on single minimized structures. Improved binding affinity predictions were obtained with the free energy perturbation (FEP) method, with an overall MUE and RMSE of 0.53 and 0.68 kcal/mol, respectively. Furthermore, in a simulation of a real-world drug discovery project, FEP was able to rank the most potent compounds at the top of the list. These results indicate that FEP can be a promising tool for the structure-based optimization of KLK6 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Yousef GM, Kishi T, Diamandis EP (2003) Role of kallikrein enzymes in the central nervous system. Clin Chim Acta 329:1–8. https://doi.org/10.1016/S0009-8981(03)00004-4

    Article  CAS  PubMed  Google Scholar 

  2. Magklara A, Mellati AA, Wasney GA et al (2003) Characterization of the enzymatic activity of human kallikrein 6: autoactivation, substrate specificity, and regulation by inhibitors. Biochem Biophys Res Commun 307:948–955. https://doi.org/10.1016/S0006-291X(03)01271-3

    Article  CAS  PubMed  Google Scholar 

  3. Pampalakis G, Sykioti VS, Ximerakis M et al (2017) KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species. Oncotarget 8:14502–14515. https://doi.org/10.18632/oncotarget.13264

    Article  PubMed  Google Scholar 

  4. Blaber SI, Scarisbrick IA, Bernett MJ et al (2002) Enzymatic properties of rat myelencephalon-specific protease. Biochemistry 41:1165–1173. https://doi.org/10.1021/bi015781a

    Article  CAS  PubMed  Google Scholar 

  5. Blaber SI, Ciric B, Christophi GP et al (2004) Targeting kallikrein 6 proteolysis attenuates CNS inflammatory disease. FASEB J 18:920–922. https://doi.org/10.1096/fj.03-1212fje

    Article  CAS  PubMed  Google Scholar 

  6. Werner J, Bernhard P, Cosenza-Contreras M et al (2023) Targeted and explorative profiling of kallikrein proteases and global proteome biology of pancreatic ductal adenocarcinoma, chronic pancreatitis, and normal pancreas highlights disease-specific proteome remodelling. Neoplasia 36:100871. https://doi.org/10.1016/j.neo.2022.100871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang L, Lovell S, De Vita E et al (2022) A KLK6 activity-based probe reveals a role for KLK6 activity in Pancreatic Cancer Cell Invasion. J Am Chem Soc 144:22493–22504. https://doi.org/10.1021/jacs.2c07378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Vita E, Smits N, van den Hurk H et al (2020) Synthesis and structure-activity Relationships of N-(4-Benzamidino)-Oxazolidinones: potent and selective inhibitors of Kallikrein-Related peptidase 6. ChemMedChem 15:79–95. https://doi.org/10.1002/cmdc.201900536

    Article  CAS  PubMed  Google Scholar 

  9. De Vita E, Schüler P, Lovell S et al (2018) Depsipeptides featuring a neutral P1 are potent inhibitors of Kallikrein-Related peptidase 6 with On-Target Cellular Activity. J Med Chem 61:8859–8874. https://doi.org/10.1021/acs.jmedchem.8b01106

    Article  CAS  PubMed  Google Scholar 

  10. Soualmia F, Bosc E, Amiri SA et al (2018) Insights into the activity control of the kallikrein-related peptidase 6: small-molecule modulators and allosterism. Biol Chem 399:1073–1078. https://doi.org/10.1515/hsz-2017-0336

    Article  CAS  PubMed  Google Scholar 

  11. Sananes A, Cohen I, Shahar A et al (2018) A potent, proteolysis-resistant inhibitor of kallikrein-related peptidase 6 (KLK6) for cancer therapy, developed by combinatorial engineering. J Biol Chem 293:12663–12680. https://doi.org/10.1074/jbc.RA117.000871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. London N, Miller RM, Krishnan S et al (2014) Covalent docking of large libraries for the discovery of chemical probes. Nat Chem Biol 10:1066–1072. https://doi.org/10.1038/nchembio.1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deng J, Li N, Liu H et al (2012) Discovery of Novel small molecule inhibitors of dengue viral NS2B-NS3 protease using virtual screening and Scaffold Hopping. J Med Chem 55:6278–6293. https://doi.org/10.1021/jm300146f

    Article  CAS  PubMed  Google Scholar 

  14. Yang T, Wu JC, Yan C et al (2011) Virtual screening using molecular simulations. Proteins Struct Funct Bioinforma 79:1940–1951. https://doi.org/10.1002/prot.23018

    Article  CAS  Google Scholar 

  15. Mondal D, Florian J, Warshel A (2019) Exploring the effectiveness of binding Free Energy Calculations. J Phys Chem B 123:8910–8915. https://doi.org/10.1021/acs.jpcb.9b07593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fernández-Bachiller MI, Hwang S, Schembri ME et al (2022) Probing factor xa protein–ligand interactions: Accurate Free Energy Calculations and experimental validations of two Series of High-Affinity Ligands. J Med Chem 65:13013–13028. https://doi.org/10.1021/acs.jmedchem.2c00865

    Article  CAS  PubMed  Google Scholar 

  17. King E, Aitchison E, Li H, Luo R (2021) Recent developments in Free Energy Calculations for Drug Discovery. Front Mol Biosci 8. https://doi.org/10.3389/fmolb.2021.712085

  18. Cournia Z, Allen B, Sherman W (2017) Relative binding Free Energy Calculations in Drug Discovery: recent advances and practical considerations. J Chem Inf Model 57:2911–2937. https://doi.org/10.1021/acs.jcim.7b00564

    Article  CAS  PubMed  Google Scholar 

  19. Paul SM, Mytelka DS, Dunwiddie CT et al (2010) How to improve RD productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9:203–214. https://doi.org/10.1038/nrd3078

    Article  CAS  PubMed  Google Scholar 

  20. Homeyer N, Stoll F, Hillisch A, Gohlke H (2014) Binding free energy calculations for lead optimization: Assessment of their accuracy in an industrial drug design context. J Chem Theory Comput 10:3331–3344. https://doi.org/10.1021/ct5000296

    Article  CAS  PubMed  Google Scholar 

  21. Liang G, Chen X, Aldous S et al (2012) Human kallikrein 6 inhibitors with a para-amidobenzylanmine P1 group identified through virtual screening. Bioorg Med Chem Lett 22:2450–2455. https://doi.org/10.1016/j.bmcl.2012.02.014

    Article  CAS  PubMed  Google Scholar 

  22. Liang G, Chen X, Aldous S et al (2012) Virtual screening and x-ray crystallography for human kallikrein 6 inhibitors with an amidinothiophene p1 group. ACS Med Chem Lett 3:159–164. https://doi.org/10.1021/ml200291e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan X, Bertonati C, Qin L et al (2013) Identification by in silico and in vitro screenings of small organic molecules acting as reversible inhibitors of kallikreins. Eur J Med Chem 70:661–668. https://doi.org/10.1016/j.ejmech.2013.10.040

    Article  CAS  PubMed  Google Scholar 

  24. Berman HM (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  26. Ahmed HU, Blakeley MP, Cianci M et al (2007) The determination of protonation states in proteins. Acta Crystallogr Sect D Biol Crystallogr 63:906–922. https://doi.org/10.1107/S0907444907029976

    Article  CAS  Google Scholar 

  27. Shapovalov MV, Dunbrack RL Jr (2011) A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 19:844–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. ChemAxon L (2013) Marvinsketch

  29. Aït Amiri S, Deboux C, Soualmia F et al (2021) Identification of First-in-class inhibitors of Kallikrein-Related peptidase 6 that promote oligodendrocyte differentiation. J Med Chem 64:5667–5688. https://doi.org/10.1021/acs.jmedchem.0c02175

    Article  CAS  PubMed  Google Scholar 

  30. OMEGA (2013) OpenEye Scientific Software

  31. Schmidtke P (2019) Tethered Minimization

  32. Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N et al (2014) rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput Biol 10:1–8. https://doi.org/10.1371/journal.pcbi.1003571

    Article  CAS  Google Scholar 

  33. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci 3:198–210

    Article  CAS  Google Scholar 

  34. He X, Man VH, Yang W et al (2020) A fast and high-quality charge model for the next generation general AMBER force field. J Chem Phys 153:114502. https://doi.org/10.1063/5.0019056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J Comput Chem 21:132–146. https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P

    Article  CAS  Google Scholar 

  36. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641. https://doi.org/10.1002/jcc.10128

    Article  CAS  PubMed  Google Scholar 

  37. Machado MR, Pantano S (2020) Split the Charge Difference in two! A rule of Thumb for adding proper amounts of ions in MD Simulations. J Chem Theory Comput 16:1367–1372. https://doi.org/10.1021/acs.jctc.9b00953

    Article  CAS  PubMed  Google Scholar 

  38. Schmit JD, Kariyawasam NL, Needham V, Smith PE (2018) SLTCAP: a simple method for calculating the number of Ions needed for MD Simulation. J Chem Theory Comput 14:1823–1827. https://doi.org/10.1021/acs.jctc.7b01254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of Complex Molecules: combining molecular mechanics and Continuum Models. Acc Chem Res 33:889–897. https://doi.org/10.1021/ar000033j

    Article  CAS  PubMed  Google Scholar 

  40. Tsui V, Case DA (2000) Theory and applications of the generalized born solvation model in macromolecular simulations. Biopolymers 56:275–291. https://doi.org/10.1002/1097-0282(2000)56:4<275::AID-BIP10024>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  41. Onufriev A, Bashford D, Case DA (2000) Modification of the generalized born Model suitable for macromolecules. J Phys Chem B 104:3712–3720. https://doi.org/10.1021/jp994072s

    Article  CAS  Google Scholar 

  42. Liu S, Wu Y, Lin T et al (2013) Lead optimization mapper: automating free energy calculations for lead optimization. J Comput Aided Mol Des 27:755–770. https://doi.org/10.1007/s10822-013-9678-y

    Article  CAS  PubMed  Google Scholar 

  43. Wang L, Berne BJ, Friesner RA (2012) On achieving high accuracy and reliability in the calculation of relative protein-ligand binding affinities. Proc Natl Acad Sci U S A 109:1937–1942. https://doi.org/10.1073/pnas.1114017109

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bowers KJ, Chow DE, Xu H et al (2006) Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In: ACM/IEEE SC 2006 Conference (SC’06). IEEE, pp 43–43

  45. D. E. Shaw Research Desmond Molecular Dynamics System

  46. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA Force Field for Proteins via comparison with Accurate Quantum Chemical calculations on peptides. J Phys Chem B 105:6474–6487. https://doi.org/10.1021/jp003919d

    Article  CAS  Google Scholar 

  47. Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys 22:245–268. https://doi.org/10.1016/0021-9991(76)90078-4

    Article  Google Scholar 

  48. Pohorille A, Jarzynski C, Chipot C (2010) Good Practices in Free-Energy Calculations. J Phys Chem B 114:10235–10253. https://doi.org/10.1021/jp102971x

    Article  CAS  PubMed  Google Scholar 

  49. Paliwal H, Shirts MR (2011) A Benchmark Test Set for Alchemical Free Energy Transformations and its use to quantify Error in Common Free Energy Methods. J Chem Theory Comput 7:4115–4134. https://doi.org/10.1021/ct2003995

    Article  CAS  PubMed  Google Scholar 

  50. R Core Team (2020) R: a Language and. Environment for Statistical Computing

  51. Breznik M, Ge Y, Bluck JP et al (2023) Prioritizing small sets of molecules for synthesis through in-silico tools: a comparison of common ranking methods. ChemMedChem 18:. https://doi.org/10.1002/cmdc.202200425

  52. Warren GL, Andrews CW, Capelli A-M et al (2006) A critical Assessment of Docking Programs and Scoring Functions. J Med Chem 49:5912–5931. https://doi.org/10.1021/jm050362n

    Article  CAS  PubMed  Google Scholar 

  53. Pantsar T, Poso A (2018) Binding Affinity via Docking: Fact and Fiction. Molecules 23:1899. https://doi.org/10.3390/molecules23081899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang L, Wu Y, Deng Y et al (2015) Accurate and Reliable Prediction of relative ligand binding potency in prospective drug Discovery by Way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137:2695–2703. https://doi.org/10.1021/ja512751q

    Article  CAS  PubMed  Google Scholar 

  55. Graves AP, Shivakumar DM, Boyce SE et al (2008) Rescoring docking hit lists for Model Cavity Sites: predictions and experimental testing. J Mol Biol 377:914–934. https://doi.org/10.1016/j.jmb.2008.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Baumann A, Isak D, Lohbeck J et al (2022) Scalable synthesis and structural characterization of reversible KLK6 inhibitors. RSC Adv 12:26989–26993. https://doi.org/10.1039/D2RA04670A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. El Santos-Martins KL, Sasmal D S, et al (2019) Comparison of affinity ranking using AutoDock-GPU and MM-GBSA scores for BACE-1 inhibitors in the D3R Grand Challenge 4. J Comput Aided Mol Des 33:1011–1020. https://doi.org/10.1007/s10822-019-00240-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sun H, Li Y, Tian S et al (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys Chem Chem Phys 16:16719–16729. https://doi.org/10.1039/C4CP01388C

    Article  CAS  PubMed  Google Scholar 

  59. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461. https://doi.org/10.1517/17460441.2015.1032936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82. https://doi.org/10.1021/ci100275a

    Article  CAS  PubMed  Google Scholar 

  61. Wang L, Wu Y, Deng Y et al (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137:2695–2703. https://doi.org/10.1021/ja512751q

    Article  CAS  PubMed  Google Scholar 

  62. Wang L, Chambers J, Abel R (2019) Protein–Ligand Binding Free Energy Calculations with FEP+. pp 201–232

  63. O’ Donovan DH, Gregson C, Packer MJ et al (2021) Free energy perturbation in the design of EED ligands as inhibitors of polycomb repressive complex 2 (PRC2) methyltransferase. Bioorg Med Chem Lett 39:127904. https://doi.org/10.1016/j.bmcl.2021.127904

    Article  CAS  PubMed  Google Scholar 

  64. Albanese SK, Chodera JD, Volkamer A et al (2020) Is structure-based Drug Design Ready for Selectivity optimization? J Chem Inf Model 60:6211–6227. https://doi.org/10.1021/acs.jcim.0c00815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Deflorian F, Perez-Benito L, Lenselink EB et al (2020) Accurate prediction of GPCR ligand binding Affinity with Free Energy Perturbation. J Chem Inf Model 60:5563–5579. https://doi.org/10.1021/acs.jcim.0c00449

    Article  CAS  PubMed  Google Scholar 

  66. Zara L, Moraca F, Van Muijlwijk-Koezen JE et al (2022) Exploring the Activity Profile of TbrPDEB1 and hPDE4 inhibitors using Free Energy Perturbation. ACS Med Chem Lett 13:904–910. https://doi.org/10.1021/acsmedchemlett.1c00690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. He X, Liu S, Lee T-S et al (2020) Fast, Accurate, and Reliable Protocols for routine calculations of protein–ligand binding affinities in Drug Design Projects using AMBER GPU-TI with ff14SB/GAFF. ACS Omega 5:4611–4619. https://doi.org/10.1021/acsomega.9b04233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liang G, Chen X, Aldous S et al (2012) Human kallikrein 6 inhibitors with a para-amidobenzylanmine P1 group identified through virtual screening. Bioorg Med Chem Lett 22:2450–2455. https://doi.org/10.1016/j.bmcl.2012.02.014

    Article  CAS  PubMed  Google Scholar 

  69. Lenselink EB, Louvel J, Forti AF et al (2016) Predicting binding affinities for GPCR Ligands using free-energy perturbation. ACS Omega 1:293–304. https://doi.org/10.1021/acsomega.6b00086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fratev F, Sirimulla S (2019) An Improved Free Energy Perturbation FEP + sampling protocol for flexible ligand-binding domains. Sci Rep 9:16829. https://doi.org/10.1038/s41598-019-53133-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schindler CEM, Baumann H, Blum A et al (2020) Large-Scale Assessment of binding free energy calculations in active Drug Discovery Projects. https://doi.org/10.1021/acs.jcim.0c00900

  72. Cappel D, Hall ML, Lenselink EB et al (2016) Relative Binding Free Energy Calculations Applied to Protein Homology Models. https://doi.org/10.1021/acs.jcim.6b00362

  73. Athanasiou C, Vasilakaki S, Dellis D, Cournia Z (2018) Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2. J Comput Aided Mol Des 32:21–44. https://doi.org/10.1007/s10822-017-0075-9

    Article  CAS  PubMed  Google Scholar 

  74. Bhati AP, Coveney PV (2022) Large Scale Study of Ligand – Protein Relative Binding Free Energy Calculations: Actionable Predictions from Statistically Robust Protocols. https://doi.org/10.1021/acs.jctc.1c01288

Download references

Acknowledgements

W.J.L.S. and R.F.F. gratefully acknowledges funding from São Paulo Research Foundation – FAPESP (2021/04450-7, 2018/11011-7 and 2019/08603-2). We are grateful to OpenEye Scientific Software, Inc. for providing us with an academic license for Omega. We thank D.E. Shaw Research for providing us with an academic license for Desmond.

Author information

Authors and Affiliations

Authors

Contributions

W.J.L.S. and R.F.F. designed the study and analyzed the data. W.J.L.S. performed the simulations. W.J.L.S. and R.F.F. wrote the manuscript. R.F.F. was responsible for the project. All authors reviewed the manuscript.

Corresponding author

Correspondence to Renato Ferreira de Freitas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima Silva, W.J., Ferreira de Freitas, R. Assessing the performance of docking, FEP, and MM/GBSA methods on a series of KLK6 inhibitors. J Comput Aided Mol Des 37, 407–418 (2023). https://doi.org/10.1007/s10822-023-00515-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-023-00515-3

Keywords

Navigation