Skip to main content
Log in

Disjoining Pressure in Thin Spherical Liquid Films and Vapor Layers with Molecular Correlations Included

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

Disjoining pressures in thin liquid films around nanosized wettable spherical particles and in thin vapor layers around non-wettable particles were calculated as functions of the lyophility degree, film thickness, and particle size on the basis of the expression for the grand thermodynamic potential as a molecular density functional. A characteristic feature of this approach is the full consideration of hard-sphere molecular correlations using the fundamental measure theory in the density functional theory (DFT) and calculation of the complete dependence of the grand thermodynamic potential of the system on the stable droplet or bubble size. Although the newly calculated dependences of the disjoining pressure are in a qualitative agreement with those found using a simpler gradient version of the molecular density functional, the results of the two methods considerably differ quantitatively. It was confirmed that the disjoining pressure in a liquid film around a nanosized lyophilic particle increases with increasing particle size and lyophilicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Deryagin, B.V., Churaev, N.V., and Muller, V.M., Poverkhnostnye sily (Surface Forces)., Moscow: Nauka, 1985.

  2. Rusanov, A.I., Russ. J. Gen. Chem., 2022, vol. 92, no. 4, pp. 539–583. https://doi.org/10.1134/S1070363222040016

    Article  Google Scholar 

  3. Rusanov, A.I. and Kuni, F.M., Colloids Surf., 1991, vol. 61, pp. 349–351. https://doi.org/10.1016/0166-6622(91)80320-N

    Article  CAS  Google Scholar 

  4. Kuni, F.M., Shchekin, A.K., Rusanov, A.I., and Widom, B., Adv. Colloid Interface Sci., 1996, vol. 65, pp. 71–124. https://doi.org/10.1016/0001-8686(96)00290-4

    Article  CAS  Google Scholar 

  5. Kuni, F.M., Shchekin, A.K., and Grinin, A.P., Phys. Usp., 2001, vol. 44, pp. 3315–3370. https://doi.org/10.1070/PU2001v044n04ABEH000783

    Article  Google Scholar 

  6. Gjennestad, M.A. and Wilhelmsen, O., Langmuir, 2020, vol. 36, p. 7879. https://doi.org/10.1021/acs.langmuir.0c00960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rusanov, A.I., Colloid J., 2020, vol. 82, pp. 62–68. https://doi.org/10.1134/S1061933X20010147

    Article  CAS  Google Scholar 

  8. Kubochkin, N. and Gambaryan-Roisman, T., Phys. Rev. Fluids, 2021, vol. 6, p. 093603. https://doi.org/10.1103/PhysRevFluids.6.093603

    Article  Google Scholar 

  9. Napari, I. and Laaksonen, A., J. Chem. Phys., 2003, vol. 119, p. 10363. https://doi.org/10.1063/1.1619949

    Article  CAS  Google Scholar 

  10. Bykov, T.V. and Zeng, X.C., J. Chem. Phys., 2002, vol. 117, p. 1851. https://doi.org/10.1063/1.1485733

    Article  CAS  Google Scholar 

  11. Bykov, T.V. and Zeng, X.C., J. Chem. Phys., 2006, vol. 125, p. 144515. https://doi.org/10.1063/1.2357937

  12. Shchekin, A.K., Lebedeva, T.S., and Tat’yanenko, D.V., Colloid J., 2016, vol. 78, pp. 553-565. https://doi.org/10.7868/S0023291216040169

    Article  CAS  Google Scholar 

  13. Shchekin, A.K. and Lebedeva, T.S., J. Chem. Phys., 2017, vol. 146, p. 094702. https://doi.org/10.1063/1.4977518

  14. Svetovoy, V.B., Devic, I., Snoeijer, J.H., and Lohse, D., Langmuir, 2016, vol. 32, pp. 11188–11196. https://doi.org/10.1021/acs.langmuir.6b01812

    Article  CAS  PubMed  Google Scholar 

  15. Huang, D.B., Quan, X.J., and Cheng, P., Int. Commun. Heat Mass Transfer, 2018, vol. 93, pp. 66–73. https://doi.org/10.1016/j.icheatmasstransfer.2018.03.005

    Article  Google Scholar 

  16. Yatsyshin, P., Duran-Olivencia, M.-A., and Kalliadasis, S., J. Phys.: Condens. Matter, 2018, vol. 30, p. 274003. https://doi.org/10.1088/1361-648X/aac6fa

  17. Yatsyshin, P. and Kalliadasis, S., J. Fluid Mech., 2021, vol. 913, p. A45. https://doi.org/10.1017/jfm.2020.1167

    Article  CAS  Google Scholar 

  18. Shchekin, A.K., Russ. Chem. Bull., 2023, vol. 72, no. 2, p. 295. https://doi.org/10.1007/s11172-023-3801-1

  19. Bhatt, D., Newman, J., and Radke, C.J., J. Phys. Chem. B, 2002, vol. 106, pp. 6529–6537. https://doi.org/10.1021/jp0202136

    Article  CAS  Google Scholar 

  20. Hu, H. and Sun, Y., Appl. Phys. Lett., 2013, vol. 103, p. 263110. https://doi.org/10.1063/1.4858469

    Article  CAS  Google Scholar 

  21. Zou, A. and Maroo, S.C., Phys. Fluids, 2021, vol. 33, p. 042007. https://doi.org/10.1063/5.0044938

    Article  CAS  Google Scholar 

  22. Bryukhanov, V.M., Baidakov, V.G., and Protsenko, S.P., Interfac. Phenom. Heat Transfer, 2017, vol. 5, pp. 153–163. https://doi.org/10.1615/InterfacPhenomHeatTransfer.2018025452

    Article  Google Scholar 

  23. Protsenko, K.R. and Baidakov, V.G., Phys. Fluids, 2023, vol. 35, p. 014111. https://doi.org/10.1063/5.0134778

    Article  CAS  Google Scholar 

  24. Shchekin, A., Gosteva, L., and Tatyanenko, D., Colloids Surf. A, 2021, vol. 615, p. 126277. https://doi.org/10.1016/j.colsurfa.2021.126277

    Article  CAS  Google Scholar 

  25. Shchekin, A.K., Gosteva, L.A., Lebedeva, T.S., and Tat’yanenko, D.V., Colloid J., 2021, vol. 83, pp. 263–269. https://doi.org/10.31857/S0023291221010122

    Article  CAS  Google Scholar 

  26. Evans, R., Adv. Phys., 1979, vol. 28, pp. 143–200. https://doi.org/10.1080/00018737900101365

    Article  CAS  Google Scholar 

  27. Evans, R., in Fundamentals of Inhomogeneous Fluids, Henderson, D., Ed., New York: Marcel Dekker, 1992, pp. 85–175.

    Google Scholar 

  28. Evans, R., in Lecture Notes at 3rd Warsaw School of Statistical Physics, Cichocki, B., Napiorkowski, M., and Piasecki, J., Eds., Warsaw: Warsaw University Press, 2010, pp. 43–85. ISBN 978-83-235-0602-7.

    Google Scholar 

  29. Lutsko, J.F., Adv. Chem. Phys., 2010, vol. 144, pp. 1–92. https://doi.org/10.1002/9780470564318.ch1

    Article  CAS  Google Scholar 

  30. Kierlik, E. and Rosinberg, M.L., Phys. Rev. A, 1990, vol. 42, pp. 3382–3387. https://doi.org/10.1103/PhysRevA.42.3382

    Article  CAS  PubMed  Google Scholar 

  31. Lutsko, J.F., J. Chem. Phys., 2008, vol. 128, p. 184711. https://doi.org/10.1063/1.2916694

    Article  CAS  PubMed  Google Scholar 

  32. Roth, R., J. Chem. Phys.: Condens. Matter, 2010, vol. 22, p. 063102. https://doi.org/10.1088/0953-8984/22/6/063102

    Article  CAS  Google Scholar 

  33. Shchekin, A.K., Shabaev, I.V., and Rusanov, A.I., J. Chem. Phys., 2008, vol. 129, p. 214111. https://doi.org/10.1063/1.3021078

    Article  CAS  PubMed  Google Scholar 

  34. Rusanov, A.I. and Shchekin, A.K., Mol. Phys., 2005, vol. 103, nos. 21–23, p. 2911. https://doi.org/10.1080/00268970500151510

    Article  CAS  Google Scholar 

  35. Weeks, J.D., Chandler, D., and Andersen, H.C., J. Chem. Phys., 1971, vol. 54, pp. 5237–5247. https://doi.org/10.1063/1.1674820

    Article  CAS  Google Scholar 

  36. Lutsko, J.F., ClassicalDFT, GitHub repository. https://github.com/jimlutsko/classicalDFT. Accessed on February 18, 2023.

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 22-13-00151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Shchekin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Dedicated to the anniversary of Academician Irina Petrovna Beletskaya

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchekin, A.K., Gosteva, L.A. Disjoining Pressure in Thin Spherical Liquid Films and Vapor Layers with Molecular Correlations Included. Dokl Phys Chem 509, 64–70 (2023). https://doi.org/10.1134/S0012501623600092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501623600092

Keywords:

Navigation