Skip to main content
Log in

Qualitative analysis of a new 6D hyper-chaotic system via bifurcation, the Poincaré notion, and its circuit implementation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This research article mainly focuses on the development of a new six-dimensional dynamical system, principally based on the Lü system. The dynamic characteristics of this introduced system are evaluated and investigated by providing its 2D and 3D plots, time series for each state, discussing bifurcation scenarios and dissipation, the Poincaré map, and calculating its Kaplan–Yorke dimension. This system achieves hyper-chaos with two positive Lyapunov exponents. The generic stagnation points are computed, and their stability analysis is covered. The proposed system has also been studied via circuit implementation on Multisim. Towards the end of the manuscript, hybrid projective combination–combination synchronization among multiple drives and responses is attained through efficient adaptive control. Based on the principles of Lyapunov stability, several nonlinear controllers are created. All the acquired analytical results in the text are validated for their efficacy and viability through simulations on MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. R L Devaney and A First Course in Chaotic Dynamical Systems: Theory And Experiment (New York: CRC Press)) (2020)

    Book  Google Scholar 

  2. H R Biswas, M M Hasan and S K Bala Barishal Uni. J. Part 1 123 (2018)

  3. S Bouali. arXiv:1311.6128 (2013)

  4. D Dudkowski, S Jafari, T Kapitaniak, N V Kuznetsov and G A Leonov Phys. Rep. 637 1 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  5. S F Al-Azzawi and A S Al-Obeidi Appl. Math. A J. Chin. Univ. 38 27 (2023)

    Article  Google Scholar 

  6. A K Mishra, S Das and V K Yadav Chin. J. Phys. 75 235 (2022)

    Article  Google Scholar 

  7. X Li and Z Li Indian J. Phys. 93 1601 (2019)

    Article  ADS  Google Scholar 

  8. K Rajagopal, Y Shekofteh, F Nazarimehr, C Li, and S Jafari Indian J. Phys. 1 (2021)

  9. M Valtonen and H Karttunen The three-body problem (London: Cambridge University Press) (2006)

    Book  Google Scholar 

  10. J B-Green, Poincaré and the three body problem (New York: American Mathematical Society) (1997)

  11. E N Lorenz J. Atmos. Sci. 20 130 (1963)

  12. S H Strogatz Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (New York: CRC Press) (1994)

  13. M Sciamanna and K A Shore Nat. Photon 9 151 (2015)

    Article  ADS  Google Scholar 

  14. B Peng, V Petrov and K Showalter J. Phys. Chem. 95 4957 (1991)

    Article  Google Scholar 

  15. V Rai and W M Schaffer Chaos Solit Fractals 12 197 (2001)

    Article  ADS  Google Scholar 

  16. W A Barnett, G Bella, T Ghosh, P Mattana and B Venturi J. Econ. Dyn. Control 134 104291 (2022)

    Article  Google Scholar 

  17. H A Messal and J Rheenen van Cell 186 235 (2023)

  18. Q Lai, C Lai, P D K Kuate, C Li and S He Int J Bifurcat Chaos 32 2250042 (2022)

  19. M S Baptista Phys. Lett. A 240 50 (1998)

  20. Y Tang, J Kurths, W Lin, E Ott and L Kocarev Chaos 30 063151 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  21. R Pool Science 243 604 (1989)

  22. L Pecora and T Carroll Phys. Rev. Lett. 64 821 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  23. Q Guo and F Wan PLOS ONE 12 1 (2017)

    Google Scholar 

  24. S Vaidyanathan J. Comput. Inf. Syst. 2 6 (2011)

  25. Y Chen, Z Jia and G Deng J. Appl. Math. 3 549 (2012)

    Article  Google Scholar 

  26. M Ho, Y Hung and C Chou Phys. Lett. A 296 43 (2002)

    Article  ADS  Google Scholar 

  27. M M Al- Sawalha J. Nonlinear Sci. Appl. 10 2103 (2017)

  28. A Khan, D Khattar and N Prajapati Pramana 89 1 (2017)

    Article  Google Scholar 

  29. M Sirohi Bol. Soc. Mat. 29 26 (2023)

  30. Z W Sun Indian J. Phys. 87 275 (2013)

  31. R Zhang and S Yang Nonlinear Dyn. 66 831 (2011)

    Article  Google Scholar 

  32. M T Yassen Chaos Solit. Fractals 27 537 (2006)

  33. Y Tong, Z Cao, H Yang, C Li and W Yu Indian J. Phys. 96 855 (2022)

    Article  ADS  Google Scholar 

  34. A Hamad Abdullah, M L Thivagar, M Alazzam Bader , F Alassery, F Hajjej and A A Shihab J. Comput. Neurosci. (2022)

  35. M Higazy, N Almalki, S Muhammad and A Al-Ghamdi J. Ocean Eng. Sci. (2022)

  36. A Sabaghian, S Balochian and M Yaghoobi Connect Sci. 32 362 (2020)

    Article  ADS  Google Scholar 

  37. X Wang, Q Ren and D Jiang Nonlinear Dyn. 104 4543 (2021)

    Article  Google Scholar 

  38. A S Al-Obeidi AS and S F Al-Azzawi Int. J. Comput. Sci. Math. 15 72 (2022)

  39. A S Al-Obeidi and S F Al-Azzawi Indones. J. Electr. Eng. Comput. Sci. 16 692 (2019)

    Google Scholar 

  40. Z S Al-Talib and S F Al-Azzawi Iraqi J. Comput. Sci. Math. 4 155 (2023)

    Google Scholar 

  41. S Wang, J Kuang, J Li, Y Luo H Lu and G Hu Phys. Rev. E 66 065202 (2002)

  42. B Wang, X Zhang and X Dong IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101 1132 (2018)

    Article  ADS  Google Scholar 

  43. H Kantz Phys. Lett. A 185 77 (1994)

  44. K A Alattas, J Mostafaee, A Sambas, A K Alanazi, S Mobayen and A Zhilenkov Mathematics 10 115 (2022)

    Article  Google Scholar 

  45. K Ciesielski Cent. Eur. J. Math. 10 2110 (2012)

  46. A Wolf, J B Swift, H L Swinney and J A Vastano Phys. D: Nonlinear Phenom. 16 285 (1985)

  47. C M Lee, P J Collins, B Krauskopf and H M Osinga SIAM J. Appl. Dyn. Syst. 7 712 (2008)

  48. J Lü, G Chen and S Zhang Int. J. Bifurc. Chaos 12 1001 (2002)

    Article  Google Scholar 

  49. P Frederickson, J L Kalpan, E D Yorke and J A Yorke Differ. Equ. 49 185 (1983)

    Article  ADS  Google Scholar 

  50. P Trikha and L S Jahanzaib Differ. Geom. Dyn. Syst. 22 (2020)

  51. H K Khalil Analysis of Nonlinear Control Systems. Control Systems, Robotics and Automation-Volume XII: Nonlinear, Distributed, and Time Delay Systems-I 24 (2009)

Download references

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukul Sirohi.

Ethics declarations

Conflict of interest

Each author hereby affirms that they have no potential conflicts of interest related to the research, writing, or publication of this paper. The authors further declare that they have no known financial conflicts of interest or close personal ties that might have appeared to affect the work described in this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattar, D., Agrawal, N. & Sirohi, M. Qualitative analysis of a new 6D hyper-chaotic system via bifurcation, the Poincaré notion, and its circuit implementation. Indian J Phys 98, 259–273 (2024). https://doi.org/10.1007/s12648-023-02796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02796-8

Keywords

Mathematics Subject Classification

Navigation