Skip to main content

Advertisement

Log in

Camellia oleifera Oil Body as a Delivery System for Curcumin: Encapsulation, Physical, and in Vitro Digestion Properties

  • Research
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Oil bodies (OB) are unique organelles for storing oil in oil seeds, which have unique physicochemical stability and are considered potential nanocarriers. In this study, we extracted Camellia oleifera oil bodies (COOB) from Camellia oleifera seeds (COS) and evaluated the function of COOB in delivering lipophilic bioactive compounds. The delivery system was prepared by loading curcumin into COOB by pH-shift method to form Curcumin-Camellia oleifera oil body emulsion (COB). Through characterization of COB with different mass fractions of curcumin, it was found that when the addition of curcumin was 1%, COB had the best encapsulation efficiency (83.53%), droplet size (2.17 μm). The COB at this concentration has physical stability against environmental stresses, showing good stability at NaCl concentrations of 100 to 500 mmol/L and pH values of 3 and 5 to 9, also after treatment at temperatures ranging from 30 to 90 °C for 20 min. Based on in vitro gastrointestinal digestion of COB, a sustained release of curcumin and free fatty acids was observed during simulated intestinal digestion, reaching 81.51% and 77.46%, respectively, after 120 min. Findings in this study indicate that COOB has potential as a delivery system for lipophilic bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available on request.

Abbreviations

OB:

Oil body

COOB:

Camellia oleifera oil body

COS:

Camellia oleifera seeds

COB:

Curcumin-Camellia oleifera oil body emulsion

EE:

Encapsulation efficiency

LC:

Loading capacity

FTIR:

Fourier transform infrared spectroscopy

CLSM:

Confocal laser scanning microscopy

FFAs:

Free fatty acids

PSD:

Particle size distribution

DAGs:

Diacylglycerols

MAGs:

Mono glycerols

GLYs:

Glycerols

References

  1. J. Fei Luan, Y. Zeng, X. Yang, B. He, Wang, Yanbin Gao, and Nan Zeng, J. Funct. Foods. 75 (2020)

  2. G. Ting Shi, Q. Wu, Jin, X. Wang, Food Control 133 (2022)

  3. M. Zhu, T. Shi, Z. Guo, H. Liao, Y. Chen, Food Chem. 321, 126640 (2020)

    Article  CAS  PubMed  Google Scholar 

  4. S. De Chirico, V. di Bari, M.J. Romero Guzman, C.V. Nikiforidis, T. Foster, D. Gray, Food Chem. 316, 126355 (2020)

    Article  PubMed  Google Scholar 

  5. F.L. Garcia, S. Ma, A. Dave, A. Acevedo-Fani, Foods 10 (12) (2021)

  6. S. De Chirico, V. Bari, T. Foster, D. Gray, Food Chemistry 241, 419 (2018)

  7. S. Zhang, H. Chen, F. Geng, D. Peng, B. Xie, Zhida Sun, Yashu Chen, and Qianchun Deng, Food Hydrocoll. 128 (2022)

  8. Y. Chen, H. Li, C. Zhang, X. Kong, Y. Hua, J. Am. Oil Chem. Soc. 98(11), 1057 (2021)

    Article  CAS  Google Scholar 

  9. O.A. Karkani, N. Nenadis, C.V. Nikiforidis, V. Kiosseoglou, Food Chem. 139(1–4), 640 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. Y. Weiping Jin, Y. Pan, C. Wu, W. Chen, D. Xu, Peng, Q. Huang, Lwt 141 (2021)

  11. Q. Farah zaaboul, Zhao, Liu, Food Hydrocoll. 124 (2022)

  12. D. Ogadimma, Okagu, C. Chibuike, Udenigwe, Food Biophys. 17(1), 10 (2021)

    Google Scholar 

  13. D.M. Arvapalli, A.T. Sheardy, K. Allado, H. Chevva, Z. Yin, J. Wei, ACS Appl. Bio Mater. 3(12), 8776 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. M. Kharat, Z. Du, G. Zhang, D.J. McClements, J. Agric. Food Chem. 65(8), 1525 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. R. Tian Jiang, Ghosh, C. Charcosset, Trends Food Sci. Technol. 112, 419 (2021)

    Article  Google Scholar 

  16. E. Ines Nikolic, A. Mitsou, V. Damjanovic, Papadimitriou, Jelena Antic-Stankovic, Boban Stanojevic, Aristotelis Xenakis, and Snezana Savic, J. Mol. Liq. 301 (2020)

  17. Y. Wu, K. Wang, Q. Liu, X. Liu, B. Mou, O.M. Lai, C.P. Tan, L.Z. Cheong, Food Chem. 367, 130700 (2022)

    Article  CAS  PubMed  Google Scholar 

  18. J. Yang, L. Wan, X. Duan, H. Wang, Z. Yang, F. Liu, X. Xu, S. Pan, Int. J. Biol. Macromol. 200, 449 (2022)

    Article  CAS  PubMed  Google Scholar 

  19. Z. Wang, R.X. Zhang, C. Zhang, C. Dai, X. Ju, R. He, J. Agric. Food Chem. 67(3), 887 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. Y. Wang, R. Sun, X. Xu, M. Du, B. Zhu, C. Wu, Int. J. Biol. Macromol. 193 (Pt B), 1471 (2021)

  21. S. Zhang, X. Xu, J. Yang, J. Ren, Food Biophys. 17(4), 575 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  22. X. Zhao, K. Wang, J. Zhao, R. Sun, H. Shang, C. Sun, L. Liu, J. Hou, Z. Jiang, J. Sci. Food. Agric. 102(11), 4909 (2022)

    Article  CAS  PubMed  Google Scholar 

  23. H. Wang, L. Chen, Q. Cai, S. Wu, W. Shen, Z. Hu, W. Huang, W. Jin, Food Chem. 409, 135283 (2023)

    Article  CAS  PubMed  Google Scholar 

  24. Y. Zhang, D. Yuan, P. Shen, F. Zhou, Q. Zhao, M. Zhao, Food Chem. 355, 129509 (2021)

    Article  CAS  PubMed  Google Scholar 

  25. S. Wei, J. Huang, L. Zhang, Q. Sun, S. Xiaojing, L. Jin, Q. Wang, Eur. J. Lipid Sci. Technol. 122 (4) (2020)

  26. M. Yufan Sun, L. Zhong, Q. Wu, Y. Wang, Li, B. Qi, Food Hydrocoll. 124 (2022)

  27. Y. Yuan, M. Ma, S. Zhang, D. Wang, Y. Xu, Int. J. Biol. Macromol. 195, 302 (2022)

    Article  CAS  PubMed  Google Scholar 

  28. M. Mehdi Mohammadian, M. Salami, Moghadam, Ali Amirsalehi, and Zahra Emam-Djomeh, J. Drug Deliv. Sci. Technol. 61 (2021)

  29. T. Jiang, C. Charcosset, Food Res. Int. 157, 111475 (2022)

    Article  CAS  PubMed  Google Scholar 

  30. S. Peng, L. Zhou, Q. Cai, L. Zou, C. Liu, W. Liu, D. Julian, McClements, Food Hydrocoll. 107 (2020)

  31. L. Yuhang Gao, F. Zhou, F. Yao, Chen, S. Casal, Journal of Chemistry 2021, 1 (2021)

  32. W. Xinxin Lan, Y. Qiang, T. Yang, J. Gao, L. Guo, M. Du, Y. Noman, J. Li, H. Li, X. Li, Li, J. Yang, Lwt 132 (2020)

  33. M.I. Shahzad Farooq, Y. Ahmad, M. Zhang, Chen, H. Zhang, Food Hydrocoll. 136 (2023)

  34. Z. Zhangyu Shi, Chen, Z. Meng, Food Hydrocoll. 135 (2023)

  35. X. Li, Q. Wang, J. Hao, D. Xu, Foods 11 (19) (2022)

  36. S. Yang, Q. Zhang, H. Yang, H. Shi, A. Dong, L. Wang, S. Yu, Int. J. Biol. Macromol. 206, 175 (2022)

    Article  CAS  PubMed  Google Scholar 

  37. Allaoua, Achouri, Vincent nail, and Joyce Irene Boye. Food Res. Int. 46(1), 360 (2012)

    Google Scholar 

  38. R. Li, X. Wang, J. Liu, Q. Cui, X. Wang, S. Chen, L. Jiang, J. Agric. Food Chem. 67(14), 4089 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. Y. Yuhang Gao, F. Zheng, Yao, F. Chen, Colloids Surf., A 654 (2022)

  40. R. Chunhong Liu, S. Wang, C. He, Cheng, Y. Ma, Lwt 131 (2020)

  41. Aslı Kancabas Kilinc and Sibel Karakaya, Ital. J. Food Sci. 34(1), 33 (2022)

    Article  Google Scholar 

  42. Q. Li, S. He, W. Xu, F. Peng, C. Gu, R. Wang, Y. Ma, Food Biophys. 13(2), 198 (2018)

    Article  CAS  Google Scholar 

  43. S. He, S. Zhou, W. Guo, Y. Wang, C. Liu, Rongchun Wang, and Fugang Xiao, J. Food Process Eng. 43 (12) (2020)

  44. C. Chen, Y. Pan, Y. Niu, D. Peng, W. Huang, W. Shen, W. Jin, Q. Huang, Food Chem. 402, 134198 (2023)

    Article  CAS  PubMed  Google Scholar 

  45. H. Zhou, B. Zheng, D.J. McClements, J. Agric. Food Chem. 69(11), 3340 (2021)

    Article  CAS  PubMed  Google Scholar 

  46. J. Han, F. Chen, C. Gao, Y. Zhang, X. Tang, Int. J. Biol. Macromol. 157, 202 (2020)

    Article  CAS  PubMed  Google Scholar 

  47. F.P. Chen, B.S. Li, C.H. Tang, J. Agric. Food Chem. 63(13), 3559 (2015)

    Article  CAS  PubMed  Google Scholar 

  48. A. Saman Sabet, L.D. Rashidinejad, Melton, J. Duncan, McGillivray, Trends Food Sci. Technol. 110, 253 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Heyuan City Science and Technology Plan Project (Heke 2021007) and Central Finance Forestry Reform and Development Fund project (grant number (2022) GDTK-11).

Author information

Authors and Affiliations

Authors

Contributions

Ziwei Huang: Writing-original draft, Writing-review & editing, Software analysis, Data collection. Xuehui Wu: Conceptualization, Methodology, Writing-review & editing, Project administration, Fund applicant. Xiaohe Lan: Data curation, Software. Bing Zhang: Data curation, Software.

Corresponding author

Correspondence to Xue-Hui Wu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, ZW., Wu, XH., Lan, XH. et al. Camellia oleifera Oil Body as a Delivery System for Curcumin: Encapsulation, Physical, and in Vitro Digestion Properties. Food Biophysics 18, 596–605 (2023). https://doi.org/10.1007/s11483-023-09801-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-023-09801-x

Keywords

Navigation