Skip to main content
Log in

Variational Iteration Method for Prediction of the Pull-In Instability Condition of Micro/Nanoelectromechanical Systems

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The dynamics of micro/nanoelectromechanical systems (M/NEMS) is a core research area in micromechanics. Due to the nonlinearities and the singular nature of actuation forces that emerge in these systems, it has become a promising and challenging research area. The foremost objective of this manuscript is to examine the dynamics of M/NEMS by approximating rational terms involved in M/NEMS structures. An M/NEMS switch under electromagnetic force is adopted to reveal the effectiveness of the expansion of rational terms. Taylor series is employed to approximate the rational function into the summation of simple terms. The well-known variational iteration method is engaged to obtain the dynamic pull-in threshold value, the nonlinear frequency, and the analytical solution of the objective system. The solution obtained from the proposed strategy exhibits good agreement with observations obtained numerically. As opposed to the existing approaches, the suggested scheme achieves a high level of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Kumar, M., Yadav, S., Kumar, A., Sharma, N.N., Akhtar, J., and Singh, K., MEMS Impedance Flow Cytometry Designs for Effective Manipulation of Micro Entities in Health Care Applications, Biosens. Bioelectron., 2019, vol. 142. https://doi.org/10.1016/j.bios.2019.111526

  2. Geetha, M. and Dhanalakshmi, K., Structural Design and Realization of Electromechanical Logic Elements Using Shape Memory Alloy Wire Actuator, Phys. Mesomech., 2020, vol. 23, no. 5, pp. 446–456. https://doi.org/10.1134/S1029959920050082

    Article  Google Scholar 

  3. Khanlo, H.M. and Dehghani, R., Distributed-Parameter Dynamic Modeling and Bifurcation Analysis of a Trapezoidal Piezomagnetoelastic Energy Harvester, J. Appl. Comput. Mech., 2022, vol. 8(1), pp. 97–113. https://doi.org/10.22055/JACM.2019.30823.1785

    Article  Google Scholar 

  4. Anjum, N., He, J.H., Ain, Q.T., and Tian, D., Li–He’s Modified Homotopy Perturbation Method for Doubly-Clamped Electrically Actuated Microbeams-Based Microelectromechanical System, Facta Univ.-Ser. Mech., 2021, vol. 19(4), pp. 601–612. https://doi.org/10.22190/FUME210112025A

    Article  Google Scholar 

  5. He, J.H., Yang, Q., He, C.H., and Alsolami, A.A., Pull-down instability of the quadratic nonlinear oscillators, Facta Univ.-Ser. Mech., 2023. https://doi.org/10.22190/FUME230114007H

  6. Malikan, M., Uglov, N.S., and Eremeyev, V.A., On Instabilities and Post-Buckling of Piezomagnetic and Flexomagnetic Nanostructures, Int. J. Eng. Sci., 2020, vol. 157. https://doi.org/10.1016/j.ijengsci.2020.103395

  7. Mohammadiana, M., Application of the Variational Iteration Method to Nonlinear Vibrations of Nanobeams Induced by the Van der Waals Force under Different Boundary Conditions, Eur. Phys. J. Plus., 2017, vol. 132, pp. 169–181. https://doi.org/10.1140/epjp/i2017-11438-4

    Article  Google Scholar 

  8. Anjum, N., He, J.H., He, C.H., and Ashiq, A., A Brief Review on the Asymptotic Methods for the Periodic‎ Behaviour of Microelectromechanical Systems, J. Appl. Comput. Mech., 2022, vol. 8(3), pp. 1120–1140. https://doi.org/10.22055/JACM.2022.39404.3401

    Article  Google Scholar 

  9. Sedighi, H.M. and Bozorgmehri, A., Dynamic Instability Analysis of Doubly Clamped Cylindrical Nanowires in the Presence of Casimir Attraction and Surface Effects Using Modified Couple Stress Theory, Acta Mech., 2016, vol. 227, pp. 1575–1591. https://doi.org/10.1007/s00707-016-1562-0

    Article  MathSciNet  Google Scholar 

  10. He, J.H., Nurakhmetov, D., Skrzypacz, P., and Wei, D.M., Dynamic Pull-In for Micro-Electromechanical Device with a Current-Carrying Conductor, J. Low Freq. Noise Vib. Act. Control, 2020. https://doi.org/10.1177/1461348419847298

  11. Abd-Alla, A.M., Abo-Dahab, S.M., Ahmed, S.M., and Rashid, M.M., Effect of a Magnetic Field on the Propagation of Waves in a Homogeneous Isotropic Thermoelastic Half-Space, Phys. Mesomech., 2020, vol. 23, no. 1, pp. 54–65. https://doi.org/10.1134/S1029959920010063

    Article  Google Scholar 

  12. Malikan, M. and Eremeyev, V.A., Flexomagnetic Response of Buckled Piezomagnetic Composite Nanoplates, Compos. Struct., 2021, vol. 267. https://doi.org/10.1016/j.compstruct.2021.113932

  13. Shishesaz, M., Shirbani, M.M., Sedighi, H.M., and Hajnayeb, A., Design and Analytical Modeling of Magneto-Electromechanical Characteristics of a Novel Magneto-Electro-Elastic Vibration-Based Energy Harvesting System, J. Sound Vib., 2018, vol. 425, pp. 149–169. https://doi.org/10.1016/j.jsv.2018.03.030

    Article  ADS  Google Scholar 

  14. Malikan, M. and Eremeyev, V.A., Effect of Surface on the Flexomagnetic Response of Ferroic Composite Nanostructures; Nonlinear Bending Analysis, Compos. Struct., 2021, vol. 271. https://doi.org/10.1016/j.compstruct.2021.114179

  15. Shirbani, M.M., Shishesaz, M., Hajnayeb, A., and Sedighi, H.M., Coupled Magnetoelectro-Mechanical Lumped Parameter Model for a Novel Vibration-Based Magneto-Electro-Elastic Energy Harvesting Systems, Physica E, 2017, vol. 90, pp. 158–169. https://doi.org/10.1016/j.physe.2017.03.022

    Article  ADS  Google Scholar 

  16. Malikan, M. and Eremeyev, V.A., On a Flexomagnetic Behavior of Composite Structures, Int. J. Eng. Sci., 2022, vol. 175. https://doi.org/10.1016/j.ijengsci.2022.103671

  17. Malikan, M. and Eremeyev, V.A., On Nonlinear Bending Study of a Piezo-Flexomagnetic Nanobeam Based on an Analytical-Numerical Solution, Nanomaterials, 2020, vol. 10(9). https://doi.org/10.3390/nano10091762

  18. Koochi, A., Goharimanesh, M., and Gharib, M.R., Nonlocal Electromagnetic Instability of Carbon Nanotube-Based Nano-Sensor, Math. Meth. Appl. Sci., 2021. https://doi.org/10.1002/mma.7216

  19. Koochi, A., Abadian, F., Rezaei, M., and Abadyan, M., Electromagnetic Instability of Electromechanical Nano-Bridge Incorporating Surface Energy and Size Dependency, Physica E. Low-Dimens. Syst. Nanostruct., 2021. https://doi.org/10.1016/j.physe.2021.114643

  20. Koochi, A., Abadyan, M., and Gholami, S., Electromagnetic Instability Analysis of Nano-Sensor, Eur. Phys. J. Plus., 2021. https://doi.org/10.1140/epjp/s13360-020-01041-z

  21. Zhang, Y. and Pang, J., Laplace-Based Variational Iteration Method for Nonlinear Oscillators in Microelectromechanical System, Math. Meth. Appl. Sci., 2020. https://doi.org/10.1002/mma.6883

  22. Qian, Y.H., Pan, J.L., Qiang, Y., and Wang, J.S., The Spreading Residue Harmonic Balance Method for Studying the Doubly Clamped Beam-Type M/NEMS Subjected to the Van der Waals Attraction, J. Low Freq. Noise Vib. Act. Control, 2019, vol. 38(3–4), pp. 1261–1271. https://doi.org/10.1177/1461348418813014

    Article  Google Scholar 

  23. Fu, Y., Zhang, J., and Wan, L., Application of the Energy Balance Method to a Nonlinear Oscillator Arising in the Microelectromechanical System (MEMS), Curr. Appl. Phys., 2011, vol. 11, pp. 482–485. https://doi.org/10.1016/j.cap.2010.08.037

    Article  ADS  Google Scholar 

  24. He, J.H., Anjum, N., and Skrzypacz, P., A Variational Principle for a Nonlinear Oscillator Arising in the Microelectromechanical System, J. Appl. Comput. Mech., 2021, vol. 7(1), pp. 78–83. https://doi.org/10.22055/JACM.2020.34847.2481

    Article  Google Scholar 

  25. Sedighi, H.M., Reza, A., and Zare, J. Using Parameter Expansion Method and Min-Max Approach for the Analytical Investigation of Vibrating Micro-Beams Pre-Deformed by an Electric Field, Adv. Struct. Eng., 2013, vol. 16(4), pp. 693–699. https://doi.org/10.1260/1369-4332.16.4.681

    Article  Google Scholar 

  26. Sedighi, H.M. and Shirazi, K.H., Vibrations of Micro-Beams Actuated by an Electric Field Via Parameter Expansion Method, Acta Astronaut., 2013, vol. 85(C), pp. 19–24. https://doi.org/10.1016/j.actaastro.2012.11.014

    Article  ADS  Google Scholar 

  27. Sadeghzadeh, S. and Kabiri, A., Application of Higher Order Hamiltonian Approach to the Nonlinear Vibration of Micro Electro Mechanical Systems, Lat. Am. J. Solids Struct., 2016, vol. 13, pp. 478–497. https://doi.org/10.1590/1679-78252557

    Article  Google Scholar 

  28. Kuang, J.H. and Chen, C.J., Adomian Decomposition Method Used for Solving Nonlinear Pull-In Behavior in Electrostatic Micro-Actuators, Math. Comp. Model., 2005, vol. 41, pp. 1479–1491. https://doi.org/10.1016/j.mcm.2005.06.001

    Article  Google Scholar 

  29. Sedighi, H.M. and Daneshmand, F., Nonlinear Transversely Vibrating Beams by the Homotopy Perturbation Method with an Auxiliary Term, J. Appl. Comput. Mech., 2015, vol. 1(1), pp. 1–9. https://doi.org/10.22055/jacm.2014.10545

    Article  Google Scholar 

  30. Tian, D., Ain, Q.T., Anjum, N., He, C.H., and Cheng, B., Fractal M/NEMS: From Pull-In Instability to Pull-In Stability, Fractals, 2020, vol. 29(2). https://doi.org/10.1142/S0218348X21500304

  31. Sedighi, H.M., Ouakad, H.M., Dimitri, R., and Tornabene, R., Stress-Driven Nonlocal Elasticity for the Instability Analysis of Fluid-Conveying C-BN Hybrid-Nanotube in a Magneto-Thermal Environment, Physica Scripta, 2020, vol. 95(6), p. 065204. https://doi.org/10.1088/1402-4896/ab793f

    Article  Google Scholar 

  32. Sedighi, H.M., Daneshmand, F., and Yaghootian, A., Application of Iteration Perturbation Method in Studying Dynamic Pull-In Instability of Micro-Beams, Lat. Am. J. Solids Struct., 2014, vol. 11(7), pp. 1078–1090. https://doi.org/10.1590/S1679-78252014000700002

    Article  Google Scholar 

  33. Sedighi, H.M. and Shirazi, K.H., Vibrations of Micro-Beams Actuated by an Electric Field Via Parameter Expansion Method, Acta Astron., 2013, vol. 85, pp. 19–24. https://doi.org/10.1016/j.actaastro.2012.11.014

    Article  Google Scholar 

  34. He, J.H., Variational Iteration Method—A Kind of Non-Linear Analytical Technique: Some Examples, Int. J. Nonlinear Mech., 1999, vol. 34, pp. 699–708. https://doi.org/10.1016/S0020-7462(98)00048-1

    Article  ADS  Google Scholar 

  35. Tao, Z.L., Chen, G.H., and Chen, Y.H., Variational Iteration Method with Matrix Lagrange Multiplier for Nonlinear Oscillators, J. Low Freq. Noise Vib. Act. Control, 2019, vol. 38(3–4), pp. 984–991. https://doi.org/10.1177/1461348418817868

    Article  Google Scholar 

  36. Hashemi, G. and Ahmadi, M., On Choice of Initial Guess in the Variational Iteration Method and Its Applications to Nonlinear Oscillator, Proc. Inst. Mech. Eng. E. J. Process Mech. Eng., 2016, vol. 230(6), pp. 452–463. https://doi.org/10.1177/0954408915569331

    Article  Google Scholar 

  37. Koochi, A., Farrokhabadi, A., and Abadyan, M., Modeling the Size Dependent Instability of NEMS Sensor/Actuator Made of Nano-Wire with Circular Cross-Section, Microsystem Technol., 2015, vol. 21, pp. 355–364. https://doi.org/10.1177/0954408915569331

    Article  Google Scholar 

  38. Farrokhabadi, A., Mokhtari, J., Koochi, A., and Abadyan, M., A Theoretical Model for Investigating the Effect of Vacuum Fluctuations on yhe Electromechanical Stability of Nanotweezers, Ind. J. Phys., 2015, vol. 89, pp. 599–609. https://doi.org/10.1007/s12648-014-0619-y

    Article  Google Scholar 

  39. Rastegar, S., Ganji, B.A., Varedi, M., and Erza, M., Application of He’s Variational Iteration Method to the Estimation of Diaphragm Deflection in MEMS Capacitive Microphone, Measurement, 2011, vol. 44, pp. 113–120. https://doi.org/10.1016/j.measurement.2010.09.028

    Article  ADS  Google Scholar 

  40. Khuri, S.A. and Sayfy, A., Generalizing the Variational Iteration Method for BVPs: Proper Setting of the Correction Functional, Appl. Math. Lett., 2017, vol. 68, pp. 68–75. https://doi.org/10.1016/j.aml.2016.11.018

    Article  MathSciNet  Google Scholar 

  41. Anjum, N., Suleman, M., He, J.H., Lu, D., and Ramzan, M., Numerical Iteration for Nonlinear Oscillators by Elzaki Transform, J. Low Freq. Noise Vib. Act. Control, 2019. https://doi.org/10.1177/1461348419873470

  42. Nawaz, Y., Arif, M.S., Bibi, M., Naz, M., and Fayyaz, R., An Effective Modification of He’s Variational Approach to a Nonlinear Oscillator, J. Low Freq. Noise Vib. Act. Control, 2019, vol. 38, pp. 1013–1022. https://doi.org/10.1177/1461348419829372

    Article  Google Scholar 

  43. Rehman, S., Hussain, A., Rahman, J.U., and Anjum, N., Modified Laplace Based Variational Iteration Method for the Mechanical Vibrations and Its Applications, Acta Mech. Autom., 2022, vol. 16(2), pp. 98–102. https://doi.org/10.2478/ama-2022-0012

    Article  Google Scholar 

  44. Nadeem, M. and Li, F.Q., He–Laplace Method for Nonlinear Vibration Systems and Nonlinear Wave Equations, J. Low Freq. Noise Vib. Act. Control, 2019, vol. 38(3–4), pp. 1060–1074. https://doi.org/10.1177/1461348418818973

    Article  Google Scholar 

  45. He, K., Nadeem, M., Habib, S., Sedighi, H.M., and Huang, D., Analytical Approach for the Temperature Distribution in the Casting-Mould Heterogeneous System, Int. J. Numer. Meth. Heat Fluid Flow, 2021. https://doi.org/10.1108/HFF-03-2021-0180

  46. Suleman, M., Lu, D., Yue, C., Rahman, J.UI, and Anjum, N., He–Laplace Method for General Nonlinear Periodic Solitary Solution of Vibration Equations, J. Low Freq. Noise Vib. Act. Control, 2018, vol. 38(3–4), pp. 1297–1304. https://doi.org/10.1177/1461348418816266

    Article  Google Scholar 

  47. Anjum, N. and He, J.H., Nonlinear Dynamic Analysis of Vibratory Behavior of a Graphene Nano/Microelectromechanical System, Math. Meth. Appl. Sci., 2020. https://doi.org/10.1002/mma.6699

Download references

Funding

The work was performed within Taif University researchers supporting project No. TURSP-2020/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-H. He.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2023, Vol. 26, No. 1, pp. 5–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjum, N., He, JH., He, CH. et al. Variational Iteration Method for Prediction of the Pull-In Instability Condition of Micro/Nanoelectromechanical Systems. Phys Mesomech 26, 241–250 (2023). https://doi.org/10.1134/S1029959923030013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923030013

Keywords:

Navigation