Skip to main content
Log in

Abstract

We consider in a smooth bounded and simply connected two dimensional domain the convergence in the \(L^2\) norm, uniformly in time, of the solution of the stochastic second-grade fluid equations with transport noise and no-slip boundary conditions to the solution of the corresponding Euler equations. We prove, that assuming proper regularity of the initial conditions of the Euler equations and a proper behavior of the parameters \(\nu \) and \(\alpha \), then the inviscid limit holds without requiring a particular dissipation of the energy of the solutions of the second-grade fluid equations in the boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Bensoussan, A.: Stochastic Navier–Stokes equations. Acta Appl. Math. 38(3), 267–304 (1995)

    Article  MathSciNet  Google Scholar 

  2. Breckner, H.: Galerkin approximation and the strong solution of the Navier–Stokes equation. J. Appl. Math. Stoch. Anal. 13(3), 239–259 (2000)

    Article  MathSciNet  Google Scholar 

  3. Butori, F., Luongo, E.: Large Deviations principle for the inviscid limit of fluid dynamic systems in 2D bounded domains. arXiv:2305.11148 (2023)

  4. Capinski, M., Gatarek, D.: Stochastic equations in Hilbert space with application to Navier–Stokes equations in any dimension. J. Funct. Anal. 126(1), 26–35 (1994)

    Article  MathSciNet  Google Scholar 

  5. Carigi, G., Luongo, E.: Dissipation properties of transport noise in the two-layer quasi-geostrophic model. J. Math. Fluid Mech. 25(2), 28 (2023)

    Article  MathSciNet  Google Scholar 

  6. Cioranescu, D., Girault, V.: Weak and classical solutions of a family of second grade fluids. Int. J. Non-Linear Mech. 32(2), 317–335 (1997)

    Article  MathSciNet  Google Scholar 

  7. Cioranescu, D., Ouazar, E.H.: Existence and uniqueness for fluids of second grade. Nonlinear Partial Differ. Equ. 109, 178–197 (1984)

    MathSciNet  Google Scholar 

  8. Constantin, P., Kukavica, I., Vicol, V.: On the inviscid limit of the Navier–Stokes equations. Proc. Am. Math. Soc. 143(7), 3075–3090 (2015)

    Article  MathSciNet  Google Scholar 

  9. Debussche, A., Pappalettera, U.: Second order perturbation theory of two-scale systems in fluid dynamics. arXiv:2206.07775 (2022)

  10. Dunn, J.E., Fosdick, R.L.: Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Ration. Mech. Anal. 56(3), 191–252 (1974)

    Article  MathSciNet  Google Scholar 

  11. Flandoli, F., Galeati, L., Luo, D.: Quantitative convergence rates for scaling limit of SPDEs with transport noise. arXiv:2104.01740 (2021)

  12. Flandoli, F., Galeati, L., Luo, D.: Scaling limit of stochastic 2D Euler equations with transport noises to the deterministic Navier–Stokes equations. J. Evol. Equ. 21(1), 567–600 (2021)

    Article  MathSciNet  Google Scholar 

  13. Flandoli, F., Luongo, E.: Stochastic Partial Differential Equations in Fluid Mechanics, vol. 2328. Springer Nature, Berlin (2023)

    Book  Google Scholar 

  14. Flandoli, F., Pappalettera, U.: From additive to transport noise in 2D fluid dynamics. In: Stochastics and Partial Differential Equations: Analysis and Computations, pp. 1–41 (2022)

  15. Galdi, G.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems. Springer Science & Business Media, Berlin (2011)

    Book  Google Scholar 

  16. Galeati, L.: On the convergence of stochastic transport equations to a deterministic parabolic one. Stoch. Partial Differ. Equ. Anal. Comput. 8(4), 833–868 (2020)

    MathSciNet  Google Scholar 

  17. Goodair, D., Crisan, D.: The zero viscosity limit of stochastic Navier–Stokes flows. arXiv:2305.18836 (2023)

  18. Holm, D.D.: Variational principles for stochastic fluid dynamics. Proc. R. Soc. A Math. Phys. Eng. Sci. 471(2176), 20140963 (2015)

    MathSciNet  Google Scholar 

  19. Iftimie, D.: Remarques sur la limite \(\alpha \rightarrow 0\) pour les fluides de grade 2. In: Studies in Mathematics and its Applications, vol. 31, pp. 457–468. Elsevier (2002)

  20. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, vol. 113. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  21. Kato, T.: Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary. In: Seminar on Nonlinear Partial Differential Equations, pp. 85–98. Springer (1984)

  22. Kato, T., Lai, C.Y.: Nonlinear evolution equations and the Euler flow. J. Funct. Anal. 56(1), 15–28 (1984)

    Article  MathSciNet  Google Scholar 

  23. Kuksin, S.B.: The Eulerian limit for 2D statistical hydrodynamics. J. Stat. Phys. 115(1), 469–492 (2004)

    Article  MathSciNet  Google Scholar 

  24. Lopes-Filho, M.C., Lopes, H.J.N., Titi, E.S., Zang, A.: Convergence of the 2D Euler-\(\alpha \) to Euler equations in the Dirichlet case: indifference to boundary layers. Phys. D: Nonlinear Phenom. 292, 51–61 (2015)

    Article  MathSciNet  Google Scholar 

  25. Lopes Filho, M.C., Mazzucato, A.L., Lopes, H.N.: Vanishing viscosity limit for incompressible flow inside a rotating circle. Physica D 237(10–12), 1324–1333 (2008)

    Article  MathSciNet  Google Scholar 

  26. Lopes Filho, M.C., Mazzucato, A.L., Lopes, H.N., Taylor, M.: Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows. Bull. Braz. Math. Soc. New Ser. 39(4), 471–513 (2008)

    Article  MathSciNet  Google Scholar 

  27. Lopes Filho, M.C., Nussenzveig Lopes, H.J., Titi, E.S., Zang, A.: Approximation of 2D Euler equations by the second-grade fluid equations with Dirichlet boundary conditions. J. Math. Fluid Mech. 17(2), 327–340 (2015)

    Article  MathSciNet  Google Scholar 

  28. Luongo, E.: Inviscid limit for stochastic Navier–Stokes equations under general initial conditions. arXiv:2111.14189 (2021)

  29. Maekawa, Y.: On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Commun. Pure Appl. Math. 67(7), 1045–1128 (2014)

    Article  MathSciNet  Google Scholar 

  30. Marsden, J.E., Ratiu, T.S., Shkoller, S.: The geometry and analysis of the averaged Euler equations and a new diffeomorphism group. Geom. Funct. Anal. GAFA 10(3), 582–599 (2000)

    Article  MathSciNet  Google Scholar 

  31. Pardoux, E.: Equations aux dérivées partielles stochastiques monotones. University, These (1975)

  32. Razafimandimby, P.A.: Grade-two fluids on non-smooth domain driven by multiplicative noise: existence, uniqueness and regularity. J. Differ. Equ. 263(5), 3027–3089 (2017)

    Article  MathSciNet  Google Scholar 

  33. Razafimandimby, P.A., Sango, M.: Weak solutions of a stochastic model for two-dimensional second grade fluids. Bound. Value Probl. 1–47, 2010 (2010)

    MathSciNet  Google Scholar 

  34. Razafimandimby, P.A., Sango, M.: Strong solution for a stochastic model of two-dimensional second grade fluids: existence, uniqueness and asymptotic behavior. Nonlinear Anal. Theory Methods Appl. 75(11), 4251–4270 (2012)

    Article  MathSciNet  Google Scholar 

  35. Reed, M.: Methods of Modern Mathematical Physics: Functional Analysis. Elsevier, Amsterdam (2012)

    Google Scholar 

  36. Rivlin, R. S., Ericksen, J. L.: Stress-deformation relations for isotropic materials. In: Collected Papers of RS Rivlin, pp. 911–1013 (1997)

  37. Sammartino, M., Caflisch, R. E.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. P II. Construction of the Navier–Stokes Solution. Commun. Math. Phys. 192(2), 463–491 (1998)

  38. Scheutzow, M.: A stochastic Gronwall lemma. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16(02), 1350019 (2013)

    Article  MathSciNet  Google Scholar 

  39. Shkoller, S.: Analysis on groups of diffeomorphisms of manifolds with boundary and the averaged motion of a fluid. J. Differ. Geom. 55(1), 145–191 (2000)

    Article  MathSciNet  Google Scholar 

  40. Skorokhod, A.V.: Studies in the Theory of Random Processes, vol. 7021. Courier Dover Publications, Mineola (1982)

    Google Scholar 

  41. Temam, R.: On the Euler equations of incompressible perfect fluids. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi" Séminaire Goulaouic-Schwartz", pp. 1–14 (1974)

  42. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, vol. 343. American Mathematical Society (2001)

  43. Temam, R., Wang, X.: On the behavior of the solutions of the Navier–Stokes equations at vanishing viscosity. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 25(3–4), 807–828 (1997)

    MathSciNet  Google Scholar 

  44. Wang, X.: A Kato type theorem on zero viscosity limit of Navier–Stokes flows. Indiana Univ. Math. J. 223–241 (2001)

Download references

Acknowledgements

I want to thank Professor Franco Flandoli and Professor Edriss Titi for useful discussions and valuable insights into the subject. I also would like to express my sincere gratitude to the referees and the editor for their careful reading and helpful suggestions which improved drastically the presentation of the paper from its initial version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliseo Luongo.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luongo, E. Inviscid limit for stochastic second-grade fluid equations. Stoch PDE: Anal Comp 12, 1046–1099 (2024). https://doi.org/10.1007/s40072-023-00303-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-023-00303-y

Keywords

Navigation