Skip to main content
Log in

Selective Laser Melting of Stainless-Steel: A Review of Process, Microstructure, Mechanical Properties and Post-Processing treatments

  • Review
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Additive Manufacturing (AM) using Selective Laser Melting (SLM) has gained significant prominence across various industries involved in stainless steel part manufacturing. Selective Laser Melting makes it possible to manufacture parts with very complex geometry and with remarkable mechanical and physicochemical properties by controlling the microstructure via the appropriate choice of process parameters. This study presents a comprehensive literature review aiming to provide the scientific and technical communities with an overview of existing knowledge and experimental data regarding the effects of Selective Laser Melting parameters and conditions on the microstructure and mechanical properties of stainless-steel parts. The objective is to highlight the impact of various factors, such as process parameters, building atmosphere, post-heat treatments and initial powder characteristics on phase transformation, porosity and microcracks formation, microstructure evolution and mechanical properties of SLMed stainless steels. Additionally, the integration of emerging Smart Additive Manufacturing (SAM) requires experimental databases, properties prediction and processing parameters optimization to enhance the entire process spanning from design to final product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Abbreviations

A(%):

Elongation at break

AI:

Artificial Intelligence

AM:

Additive Manufacturing

D/Z:

Ratio related to the building direction

DLMS:

Direct Laser Metal Sintering

E v :

Volumetric heat input

h:

Hatch distance

Hv:

Vickers hardness

Mf:

Martensite finish temperature

ML:

Machine Learning

Ms:

Martensite start temperature

P:

Laser power

R a :

Average surface roughness

SAM:

Smart Additive Manufacturing

SLM:

Selective Laser Melting

SLS:

Selective Laser Sintering

SPD:

Severe Plastic Deformation

t :

Powder layer thickness

V:

Laser scanning velocity

Z:

Building direction

ρ :

Relative density

σ uts :

Ultimate tensile strength

σ y :

Yield strength

References

  1. Deckard C, Beaman JJ, Darrah JF (1989) Method and Apparatus for Producing Parts by Selective Sintering. United States Patent 4(863):538

    Google Scholar 

  2. Hk R, Pal D, Patil N, Star T, Be S (2014) Microstructure and mechanical behavior of 17–4PH precipitation hardenable steel processed by selective laser melting. J Mater Eng Perform 23(12):4421–4428. https://doi.org/10.1007/s11665-014-1226-y

    Article  Google Scholar 

  3. Gunenthiram V (2018) Understanding porosity formation in additive manufacturing (LBM). Experimental analysis of the laser - powder bed - liquid bath interaction. Thesis, ENSAM ParisTech.

  4. Verquin B, Hoguin S, Lavoipierre TC, Le Gall C (2019) Metal additive manufacturing: The fundamentals. Technical Center for Mechanical Industries (Cetim), p16

  5. Hussein A, Hao L, Yan C, Everson R, Young P (2013) Advanced lattice support structures for metal additive manufacturing. J Mater Process Technol 213(7):1019–1026

    Article  Google Scholar 

  6. DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components – Process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  7. Lingbin M, Brandon M, William J, Hye-yeong P, Yeon-gil J, Jehyun L, Jing Z (2020) Machine Learning in Additive Manufacturing: A Review. JOM 72:2363–2377. https://doi.org/10.1007/s11837-020-04155-y

    Article  Google Scholar 

  8. Babu SS, Mourad A-HI, Harib KH, Vijayavenkataraman S (2023) Recent developments in the application of machine-learning towards accelerated predictive multiscale design and additive manufacturing. Virtual Phys Prototyp 18(1):e2141653. https://doi.org/10.1080/17452759.2022.2141653

    Article  Google Scholar 

  9. Rahman MA, Saleh T, Jahan MP, McGarry C, Chaudhari A, Huang R, Tauhiduzzaman M, Ahmed A, Mahmud AA, Bhuiyan MS et al (2023) Review of Intelligence for Additive and Subtractive Manufacturing: Current Status and Future Prospects. Micromachines 14:508. https://doi.org/10.3390/mi14030508

    Article  Google Scholar 

  10. Xia M, Gu D, Yu G, Dai D, Chen H, Shi Q (2016) Selective laser melting 3D printing of Ni-based superalloy: understanding thermodynamic mechanisms. Sci Bull 61:1013–1022. https://doi.org/10.1007/s11434-016-1098-7

    Article  Google Scholar 

  11. AMM M, Garciandia F, Sebastian MS, Álvarez P, Díaz J, Unanue I (2016) Reduction of the residual porosity in parts manufactured by selective laser melting using skywriting and high focus offset strategies. Phys Procedia 83:864–873. https://doi.org/10.1016/j.phpro.2016.08.090

    Article  Google Scholar 

  12. Thijs L, Verhaeghe F, Craeghs T, Van Humbeeck J, Kruth JP (2010) A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater 58:3303–3312. https://doi.org/10.1016/j.actamat.2010.02.004

    Article  Google Scholar 

  13. Kruth JP, Badrossamay M, Yasa E, Deckers J, Thijs L, Van Humbeeck J, Zhao W , Ye J, Zhu D (2010) Part and material properties in selective laser melting of metal. 16th International Symposium on Electro machining (ISEM XV) 3-14

  14. Carlton HD, Haboub A, Gallegos GF, Parkinson DY, AA MD (2016) Damage evolution and failure mechanisms in additively manufactured stainless steel. Mater Sci Eng A 651:406–414. https://doi.org/10.1016/j.msea.2015.10.073

    Article  Google Scholar 

  15. Hu Z, Zhu H, Zhang H, Zeng X (2017) Experimental investigation on selective laser melting of 17-4PH stainless steel. Opt Laser Technol 87:17–25. https://doi.org/10.1016/j.optlastec.2016.07.012

    Article  Google Scholar 

  16. Abd-Elghany K, Bourell DL (2012) Property evaluation of 304L stainless steel fabricated by selective laser melting. Rapid Prototyp J 18(5):420–428. https://doi.org/10.1108/13552541211250418

    Article  Google Scholar 

  17. Röttger A, Geenen K, Windmann M, Binner F, Theisen W (2016) Comparison of microstructure and mechanical properties of 316 L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material. Mater Sci Eng 678:365–376. https://doi.org/10.1016/j.msea.2016.10.012

    Article  Google Scholar 

  18. Gu H, Gong H, Pal D, Rafi K, Starr T & Stucker B (2013) Influences of energy density on porosity and microstructure of selective laser melted 17- 4ph stainless steel. 24th annual international solid freeform fabrication symposium. 474-189. https://doi.org/10.26153/tsw/15572

  19. Roberts D, Zhang Y, Charit I, Zhang J (2018) A comparative study of microstructure and high-temperature mechanical properties of 15-5 PH stainless steel processed via additive manufacturing and traditional manufacturing. Prog Add Manuf 3:183–190. https://doi.org/10.1007/s40964-018-0051-5

    Article  Google Scholar 

  20. Maya J, Sivaprasad K, GVS K, Baitimerov R, Lykov P, Prashanth KG (2022) Microstructure, Mechanical Properties, and Corrosion Behavior of 06Cr15Ni4CuMo Processed by Using Selective Laser Melting. Metals 12:1303. https://doi.org/10.3390/met12081303

    Article  Google Scholar 

  21. Dong D, Chang C, Wang H, Yan X, Ma W, Liu M, Deng S, Gardan J, Bolot R, Liao H (2020) Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism. J Mater Sci Technol 73:151–164. https://doi.org/10.1016/j.jmst.2020.09.031

    Article  Google Scholar 

  22. Yasa E, Kempen K, Kruth J-P, Thijs L, Van Humbeeck J (2010) Microstructure and mechanical properties of maraging steel 300 after selective laser melting. Solid Freeform Fabrication Symposium Proceedings 383 – 396

  23. Kempen K, Yasa E, Thijs L, Kruth J, Humbeeck V (2011) Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel. Phys Procedia 12:255–263. https://doi.org/10.1016/j.phpro.2011.03.033

    Article  Google Scholar 

  24. Vastola G, Pei QX, Zhang YW (2018) Predictive model for porosity in powder-bed fusion additive manufacturing at high beam energy regime. Add Manuf 22:817–822. https://doi.org/10.1016/j.addma.2018.05.042

    Article  Google Scholar 

  25. Laohaprapanon A, Jeamwatthanachai P, Wongcumchang M, Chantarapanich N, Chantaweroad S, Sitthiseripratip K, Wisutmethangoon S (2012) Optimal Scanning Condition of Selective Laser Melting Processing with Stainless Steel 316L Powder. Adv Mater Res 341-342:816–820. https://doi.org/10.4028/www.scientific.net/AMR.341-342.816

    Article  Google Scholar 

  26. Mutua J, Nakata S, Onda T, Chen Z (2018) Optimization of selective laser melting parameters and in fluence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater Des 139:486–497. https://doi.org/10.1016/j.matdes.2017.11.042

    Article  Google Scholar 

  27. Sun Y, Hebert RJ, Aindow M (2018) Non-metallic inclusions in 17-4PH stainless steel parts produced by selective laser melting. Mater Des 140:153–162. https://doi.org/10.1016/j.matdes.2017.11.063

    Article  Google Scholar 

  28. Mercelis P, Kruth JP (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12(5):254–265. https://doi.org/10.1108/13552540610707013

    Article  Google Scholar 

  29. Suryawanshi J, Prashanth KG, Ramamurty U (2017) Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting. J Alloys Compd 725:355–364. https://doi.org/10.1016/j.jallcom.2017.07.177

    Article  Google Scholar 

  30. Yadollahi A, Shamsaei N, Thompson S, Elwany A, Bian L (2015) Mechanical and microstructural properties of selective laser melted 17–4 PH stainless steel. Adv Manuf 2A. https://doi.org/10.1115/IMECE2015-52362

  31. Rafi HK, Starr TL, Stucker BE (2013) A comparison of the tensile, fatigue, and fracture behavior of Ti-6Al-4V and 15-5 PH stainless steel parts made by selective laser melting. Int J Adv Manuf Technol 69:1299–1309. https://doi.org/10.1007/s00170-013-5106-7

    Article  Google Scholar 

  32. Wu JH, Lin CK (2003) Influence of high temperature exposure on the mechanical behavior and microstructure of 17–4 PH stainless steel. J Mater Sci 38(5):965–971. https://doi.org/10.1023/A:1022377225704

    Article  Google Scholar 

  33. Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth JP (2010) A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater 58:3303–3312. https://doi.org/10.1016/j.actamat.2010.02.004

    Article  Google Scholar 

  34. LeBrun T, Nakamoto T, Horikawa K, Kobayashi H (2015) Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17-4PH stainless steel. Mater Des 81:44–53. https://doi.org/10.1016/j.matdes.2015.05.026

    Article  Google Scholar 

  35. Zhou Z, Zhang K, Hong Y, Zhu H, Zhang W, He Y, Zhou C, Zheng J, Zhang L (2021) The dependence of hydrogen embrittlement on hydrogen transport in selective laser melted 304L stainless steel. Int J Hydrog Energy 46(29):16153–16163. https://doi.org/10.1016/j.ijhydene.2021.02.035

    Article  Google Scholar 

  36. Guan K, Wang Z, Gao M, Li X, Zeng X (2013) Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel. Mater Des 50:581–586. https://doi.org/10.1016/j.matdes.2013.03.056

    Article  Google Scholar 

  37. Zhong Y, Liu L, Wikman S, Cui D, Shen Z (2016) Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J Nucl Mater 470:170–178. https://doi.org/10.1016/j.jnucmat.2015.12.034

    Article  Google Scholar 

  38. Herzog D, Seyda V, Wycisk E, Emmelmann C (2013) Additive manufacturing of metals. Acta Mater 117:371–392. https://doi.org/10.1016/j.actamat.2016.07.019

    Article  Google Scholar 

  39. Fayazfar H, Salarian M, Rogalsky A, Sarker D, Russo P, Paserin V, Toyser-kani E (2018) A critical review of powder-based additive manufacturing of ferrous alloys : Process parameters, microstructure and mechanical properties. Mater Des 144:98–128. https://doi.org/10.1016/j.matdes.2018.02.018

    Article  Google Scholar 

  40. Basak A, Das S (2016) Epitaxy and microstructure evolution in metal additive manufacturing. Ann Rev Mater Res Ann 46(1):125–149. https://doi.org/10.1146/annurev-matsci-070115-031728

    Article  Google Scholar 

  41. Das S (2003) Physical aspects of process control in selective laser sintering of metals. Adv Eng Mater 5(10):701–711. https://doi.org/10.1002/adem.200310099

    Article  Google Scholar 

  42. Elgadari MH (2018) Role of inert gas to reduce mechanical defects of the built object fabricated by SLM process. Thesis, University Of Malaya

  43. Pham MS, Dovgyy B, Hooper PA, Gourlay CM, Piglione A (2020) The role of side-branching in microstructure development in laser powder-bed fusion. Nat Commun 11(1):749. https://doi.org/10.1038/s41467-020-14453-3

    Article  Google Scholar 

  44. Murr LE, Martinez E, Hernandez J, Collins S, Amato KN, Gaytan SM, Shindo PW (2012) Microstructures and properties of 17-4 PH Stainless steel fabricated by selective laser melting. J Mater Res Technol 1(3):167–177. https://doi.org/10.1016/S2238-7854(12)70029-7

    Article  Google Scholar 

  45. Facchini L, Vicente N, Lonardelli JR, Magalini E, Robotti P, Molinari A (2010) Metastable austenite in 17-4 precipitation-hardening stainless steel produced by selective laser melting. Adv Eng Mater 12(3):84–188. https://doi.org/10.1002/adem.200900259

    Article  Google Scholar 

  46. Alnajjar M, Christien F, Wolski K, Bosch C (2019) Evidence of austenite by-passing in a stainless steel obtained from laser melting additive manufacturing. Add Manuf 25:187–195. https://doi.org/10.1016/j.addma.2018.11.004

    Article  Google Scholar 

  47. Cheruvathur S, Lass EA, Campbell CE (2015) Additive Manufacturing of 17-4PH Stainless Steel: Post-processing Heat Treatment to Achieve Uniform Reproducible Microstructure. JOM 68(3):930–942. https://doi.org/10.1007/s11837-015-1754-4

    Article  Google Scholar 

  48. Sun Y, Hebert RJ, Aindow M (2018) Effect of heat treatments on microstructural evolution of additively manufactured and wrought 17-4PH stainless steel. Mater Des 156:429–440. https://doi.org/10.1016/j.matdes.2018.07.015

    Article  Google Scholar 

  49. Le Z, Chaoqun Z, Yiqiang W, Wei G, Daniel W, Xin T, Yingtao T (2020) Laser powder bed fusion of precipitation-hardened martensitic stainless steels: A Review. Metals 2020, 10(2), 255; https://doi.org/10.3390/met10020255

  50. Limousin M (2018) Développement d’inserts de moule pour l’injection plastique en acier inoxydable martensitique et en verre métallique massif produits par Laser Beam Melting (LBF). Thesis, University of Lyon

  51. Wang X, Muñiz-Lerma JA, Sánchez MO, Attarian SM, Brochu M (2018) Microstructure and mechanical properties of stainless steel 316L vertical struts manufactured by laser powder bed fusion process. Mater Sci Eng 736:27–40. https://doi.org/10.1016/j.msea.2018.08.069

    Article  Google Scholar 

  52. Saeidi K, Akhtar F (2018) Subgrain-controlled grain growth in the laser-melted 316 L promoting strength at high temperatures. R Soc Open Sci 5(5):172394. https://doi.org/10.1098/rsos.172394

    Article  Google Scholar 

  53. Krakhmalev P, Yadroitsava I, Fredriksson G, Yadroitsev I (2017) Microstructural and thermal stabi lity of selective laser melted 316L stainless steel single tracks. South African J Industr Eng 28(1):12–19. https://doi.org/10.7166/28-1-1466

    Article  Google Scholar 

  54. Wang YM, Voisin T, JT MK, Ye J, Calta NP, Li Z, Zeng Z, Zhang Y, Chen W, Roehling TT, Ott RT, Santala MK, Depond PJ, Matthews MJ, Hamza AV, Zhu T (2018) Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater 17:63–71. https://doi.org/10.1038/nmat5021

    Article  Google Scholar 

  55. Sarkar S, Mukherjee S, Kumar CS, Kumar NA (2020) Effects of heat treatment on microstructure, mechanical and corrosion properties of 15-5 PH stainless steel parts built by selective laser melting process. J Manuf Process 50:279–294. https://doi.org/10.1016/j.jmapro.2019.12.048

    Article  Google Scholar 

  56. Cherry JA, Davies HM, Mehmood S, Lavery NP, Brown SGR, Sienz J (2014) Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 76(5-8):869–879. https://doi.org/10.1007/s00170-014-6297-2

    Article  Google Scholar 

  57. Chen W, Yin G, Feng Z, Liao X (2018) Effect of Powder Feedstock on Microstructure and Mechanical Properties of the 316L Stainless Steel Fabricated by Selective Laser Melting. Metals 8(9):729. https://doi.org/10.3390/met8090729

    Article  Google Scholar 

  58. Van Belle L, Vansteenkiste G, Boyer JC (2012) Comparisons of Numerical Modelling of the Selective Laser Melting. Key Eng Mater 504-506:1067–1072. https://doi.org/10.4028/www.scientific.net/KEM.504-506.1067

    Article  Google Scholar 

  59. Leuders S, Lieneke T, Lammers S, Tröster T, Niendorf T (2014) On the fatigue properties of metals manufactured by selective laser melting – The role of ductility. J Mater Res 29(17):1911–1919. https://doi.org/10.1557/jmr.2014.157

    Article  Google Scholar 

  60. Spierings AB, Starr TL, Wegener K (2013) Fatigue performance of additive manufactured metallic parts. Rapid Prototyp J 19(2):88–94. https://doi.org/10.1108/13552541311302932

    Article  Google Scholar 

  61. Bezuidenhout M, Ter Haar G, Becker T, Rudolph S, Damm O, Sacks N (2020) The effect of HF-HNO3 chemical polishing on the surface roughness and fatigue life of laser powder bed fusion produced Ti6Al4V. Mater Today Commun 25:101396. https://doi.org/10.1016/j.mtcomm.2020.101396

    Article  Google Scholar 

  62. Yang KT, Kim MK, Kim D, Suhr J (2021) Investigation of laser powder bed fusion manufacturing and post-processing for surface quality of as-built 17-4PH stainless steel. Surf Coat Technol 422:127492. https://doi.org/10.1016/j.surfcoat.2021.127492

    Article  Google Scholar 

  63. Barroux M (2021) Correlation between microstructure and corrosion behavior of 17-4 PH stainless steel produced by laser fusion on powder bed. Thesis, National Polytechnic Institute of Toulouse (Toulouse INP)

  64. Hsu TH, Chang YJ, Huang CY, Yen HW, Chen CP, Jen KK, Yeh AC (2019) Microstructure and property of a selective laser melting process induced oxide dispersion strengthened 17-4 PH stainless steel. J Alloys Compd 803:30–41. https://doi.org/10.1016/j.jallcom.2019.06.289

    Article  Google Scholar 

  65. Yin S, Chen C, Yan X, Feng X, Jenkins R, O’Reilly P, Liu M, Li H, Lupoi R (2018) The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel. Add Manuf 22:592–600. https://doi.org/10.1016/j.addma.2018.06.005

    Article  Google Scholar 

  66. Chang C, Yan X, Bolot R, Gardan J, Gao S, Liu M, Deng S (2020) Influence of post-heat treatments on the mechanical properties of CX stainless steel fabricated by selective laser melting. J Mater Sci 55:8303–8316. https://doi.org/10.1007/s10853-020-04566-x

    Article  Google Scholar 

  67. Yan X, Chen C, Chang C, Dong D, Zhao R, Jenkins R, Wang J, Ren Z, Liu M, Liao H, Lupoi R, Yin S (2020) Study of the microstructure and mechanical performance of C-X stainless steel processed by selective laser melting (SLM). Mater Sci Eng 781:139227. https://doi.org/10.1016/j.msea.2020.139227

    Article  Google Scholar 

  68. Yadollahi A, Shamsaei N, Thompson SM, Elwany A, Bian L (2017) Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel. Int J Fatigue 94(2):218–235. https://doi.org/10.1016/j.ijfatigue.2016.03.014

    Article  Google Scholar 

  69. Carneiro L, Jalalahmadi B, Ashtekar A, Jiang Y (2019) Cyclic deformation and fatigue behavior of additively manufactured 17–4PH stainless steel. Int J Fatigue 123:22–30. https://doi.org/10.1016/j.ijfatigue.2019.02.006

    Article  Google Scholar 

  70. Lee J, Lee M, Chae H, Yeol S, Na T, Kim W (2020) Effects of building direction and heat treatment on the local mechanical properties of direct metal laser sintered 15-5 PH stainless steel. Mater Charact 167:110468. https://doi.org/10.1016/j.matchar.2020.110468

    Article  Google Scholar 

  71. Rigal E (2017) hot isostatic pressing (HIP). engineering technique M3310(2):29-32

  72. Lou X, Andresen PL, Rebak RB (2018) Oxide inclusions in laser additive manufactured stainless steel and their effects on impact toughness and stress corrosion cracking behavior. J Nucl Mater 499:182–190. https://doi.org/10.1016/j.jnucmat.2017.11.036

    Article  Google Scholar 

  73. Almangour B, Grzesiak D, Yang JM (2017) Selective laser melting of TiB2/316L stainless steel composites: The roles of powder preparation and hot isostatic pressing post-treatment. Powder Technol 309:37–48. https://doi.org/10.1016/j.powtec.2016.12.073

    Article  Google Scholar 

  74. Yan F, Xiong W, Faierson EJ (2017) Grain Structure Control of Additively Manufactured Metallic Materials. Materials 10(11):1260. https://doi.org/10.3390/ma10111260

    Article  Google Scholar 

  75. Almangour B, Yang JM (2016) Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing. Mater Des 110:914–924. https://doi.org/10.1016/j.matdes.2016.08.037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Mabrouki.

Ethics declarations

Conflict of Interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sghaier, T.A.M., Sahlaoui, H., Mabrouki, T. et al. Selective Laser Melting of Stainless-Steel: A Review of Process, Microstructure, Mechanical Properties and Post-Processing treatments. Int J Mater Form 16, 41 (2023). https://doi.org/10.1007/s12289-023-01769-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12289-023-01769-w

Keywords

Navigation