Skip to main content
Log in

Analysis of SARS-CoV-2 interactions with the Vero cell lines by scanning electron microscopy

  • Research
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

In this study, scanning electron microscopy (SEM) was used to study the cell structure of SARS-CoV-2 infected cells. Our measurements revealed infection remodeling caused by infection, including the emergence of new specialized areas where viral morphogenesis occurs at the cell membrane. Intercellular extensions for viral cell surfing have also been observed. Our results expand knowledge of SARS-CoV-2 interactions with cells, its spread from cell to cell, and their size distribution. Our findings suggest that SEM is a useful microscopic method for intracellular ultrastructure analysis of cells exhibiting specific surface modifications that could also be applied to studying other important biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G.F., Phil, D., Tan, W.: A novel Coronavirus from patients with pneumonia in China, 2019. New Engl. J. Med. 382, 727–733 (2020). https://doi.org/10.1056/NEJMoa2001017

    Article  Google Scholar 

  2. Schoeman, D., Fielding, B.C.: Coronavirus envelope protein: current knowledge. Virol. J. 16(1), 69 (2019). https://doi.org/10.1186/s12985-019-1182-0. PMID:31133031; PMCID:PMC6537279

    Article  Google Scholar 

  3. Alkhansa, A., Lakkis, G., El Zein, L.: Mutational analysis of SARS-CoV-2 ORF8 during six months of COVID-19 pandemic. Gene Reports 23, 101024 (2021). https://doi.org/10.1016/j.genrep.2021.101024

  4. Bakhshandeh, B., Jahanafrooz, Z., Abbasi, A., Goli, M. B., Sadeghi, M., Mottaqi, M. S., Zamani, M.: Mutations in SARS-CoV-2; Consequences in structure, function, and pathogenicity of the virus. Microbial Pathogen. 154, 104831, (2021). https://doi.org/10.1016/j.micpath.2021.104831

  5. Peiris, J.S., Guan, Y., Yuen, K.Y.: Severe acute respiratory syndrome. Nat. Med. 10(12 Suppl), S88–S97 (2004). https://doi.org/10.1038/nm1143

    Article  Google Scholar 

  6. Wang, Y., Li, X., Liu, W., Gan, M., Zhang, L., Wang, J., Zhang, Z., Zhu, A., Li, F., Sun, J., Zhang, G., Zhuang, Z., Luo, J., Chen, D., Qiu, S., Zhang, L., Xu, D., Mok, Ch.K.P., Zhang, F., Zhao, J., Zhou, R., Zhao, J.: Discovery of a subgenotype of human coronavirus NL63 associated with severe lower respiratory tract infection in China, 2018. Emerg. Microbes Infect. 9(1), 246–255 (2020). https://doi.org/10.1080/22221751.2020.1717999

    Article  Google Scholar 

  7. Ashour, H.M., Elkhatib, W.F., Rahman, M.M., Elshabrawy, H.A.: Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens 9(3), 186 (2020). https://doi.org/10.3390/pathogens9030186

    Article  Google Scholar 

  8. Shang, J., Han, N., Chen, Z., Peng, Y., Li, L., Zhou, H., Ji, Ch., Meng, J., Jiang, T., Wu, A.: Compositional diversity and evolutionary pattern of coronavirus accessory proteins. Brief. Bioinform. 22(2), 1267–78 (2021). https://doi.org/10.1093/bib/bbaa262

    Article  Google Scholar 

  9. Kesheh, M.M., Hosseini, P., Soltani, S., Zandi, M.: An overview on the seven pathogenic human coronaviruses. Rev. Med. Virol. 32(2), e2282 (2022). https://doi.org/10.1002/rmv.2282

  10. Zandi, M.: ORF9c and ORF10 as accessory proteins of SARS-CoV-2 in immune evasion. Nat. Rev. Immunol. 22, 331 (2022). https://doi.org/10.1038/s41577-022-00715-2

    Article  Google Scholar 

  11. Redondo, N., Zaldívar-López, S., Garrido, J.J., Montoya, M.: SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns. Front. Immunol. 12, 1664–3224 (2021). https://doi.org/10.3389/fimmu.2021.708264

    Article  Google Scholar 

  12. Caly, L., Druce, J., Roberts, J., Bond, K., Tran, T., Kostecki, R., Yoga, Y., Naughton, W., Taiaroa, G., Seemann, T., Schultz, M.B., Howden, B.,P., Korman T.M., Lewin, S.R., Williamson D.A., Catton M.G.: Isolation and rapid sharing of the 2019 novel coronavirus (SARS-CoV-2) from the first patient diagnosed with COVID-19 in Australia. Med. J. Aust. 212, 459–462 (2020). https://doi.org/10.5694/mja2.50569

  13. https://www.biomarker.hu/sites/default/files/termek-fajlok/emcpd300_om_en_12_18.pdf

  14. https://www.leica-microsystems.com/products/sample-preparation-for-electron-microscopy/p/leica-em-ace200/

  15. Pramanick, I., Sengupta, N., Mishra, S., Pandey, S., Girish, N., Das, A., Dutta, S.: Conformational flexibility and structural variability of SARS-CoV2 S protein. Structure 29(8), 834-845.e5 (2021). https://doi.org/10.1016/j.str.2021.04.006

    Article  Google Scholar 

  16. Caldas, L.A., Carneiro, F.A., Higa, L.M., Monteiro, F.L., da Silva, G.P., da Costa, L.J., Durigon, E.L., Tanuri, A., de Souza, W.: Ultrastructural analysis of SARS-CoV-2 interactions with the host cell via high resolution scanning electron microscopy. Sci. Rep. 10, 16099 (2020). https://doi.org/10.1038/s41598-020-73162-5

    Article  ADS  Google Scholar 

  17. Colson, P., Lagier, J.-C., Baudoin, J.-P., Bou Khalil, J., La Scola, B., Raoult, D.: Ultrarapid diagnosis, microscope imaging, genome sequencing, and culture isolation of SARS-CoV-2. Eur. J. Clin. Microbiol. Infect. Dis. 39(8), 1601–1603 (2020). https://doi.org/10.1007/s10096-020-03869-w

    Article  Google Scholar 

  18. Ammerman, N., Beier-Sexton, M., Azad, A.: Vero cell line maintenance. Curr. Protoc. Microbiol. 4, 1–10 (2008). https://doi.org/10.1002/9780471729259.mca04es11.Growth

    Article  Google Scholar 

  19. Pires De Souza, G.A., Le Bideau, M., Boschi, C., Wurtz, N., Colson, P., Aherfi, S., Devaux, Ch., La Scola, B.: Choosing a cellular model to study SARS-CoV-2. Front. Cellular Infect. Microbiol. 12, 2235-2988 (2022).https://doi.org/10.3389/fcimb.2022.1003608

  20. Kim, J.M., Chung, Y.S., Jo, H.J., Lee, N.J., Kim, M.S., Woo, S.H., Park, S., Kim, J.W., Kim, H.M., Han, M.G.: Identification of Coronavirus isolated from a patient in Korea with COVID-19. Osong. Public Health Res. Perspect. 11, 3–7 (2020). https://doi.org/10.24171/j.phrp.2020.11.1.02

    Article  Google Scholar 

  21. Zhu, X., Ge, Y., Wu, T., Zhao, K., Chen, Y., Wu, B., Zhu, F., Zhu, B., Cui, L.: Co-infection with respiratory pathogens among COVID-2019 cases. Virus Res. 285, 198005 (2020). https://doi.org/10.1016/j.virusres.2020.198005

  22. Widera, M., Westhaus, S., Rabenau, H.F., Hoehl, S., Bojkova, D., Cinatl, J., Jr, Ciesek, S.: Evaluation of stability and inactivation methods of SARS-CoV-2 in context of laboratory settings. Med. Microbiol. Immunol. 210(4), 235–244 (2021). https://doi.org/10.1007/s00430-021-00716-3

    Article  Google Scholar 

  23. Spearman, C.: The method of ‘Right and Wrong Cases’ (‘Constant Stimuli’) without Gauss’s formulae. Br. J. Psychol. 2, 227–242 (1908)

    Google Scholar 

  24. Prasad, S., Potdar, V., Cherian, S., Abraham, P., Basu, A.: ICMR-NIV NIC Team Transmission electron microscopy imaging of SARS-CoV-2. Indian J. Med. Res. 151(2&3), 241–243 (2020). https://doi.org/10.4103/ijmr.IJMR_577_20. PMID:32362648; PMCID:PMC7224615

    Article  Google Scholar 

Download references

Funding

This work was supported by TAČR GAMA II project Software for virus detection from electron microscopy images and related methodological procedures (TP01010032).

Author information

Authors and Affiliations

Authors

Contributions

Zuzana Malá and Marek Vojta performed the experiments. Josef Zelenka was involved in planning and supervised the experiments. Zuzana Malá processed the experimental data, performed the analysis, drafted the manuscript. Radek Sleha prepared and infected Vero cells by SARS_CoV_2. Jan Loskot and Bruno Ježek performed the statistical analysis. Zuzana Malá wrote the manuscript. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Zuzana Malá.

Ethics declarations

Ethical approval

This is an observational study.

Informed consent

N/A.

Conflict of interest

The authors declare no competing interests. The authors declare that they have no known competing financial and non-financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1954 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malá, Z., Vojta, M., Loskot, J. et al. Analysis of SARS-CoV-2 interactions with the Vero cell lines by scanning electron microscopy. J Biol Phys 49, 383–392 (2023). https://doi.org/10.1007/s10867-023-09638-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-023-09638-y

Keywords

Navigation