Skip to main content
Log in

Formation of Waveguide Layers on the Surface of K8 Glass Produced by Thermoradiation Ion Exchange

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The low-temperature heat treatment of K8 glass is carried out at temperatures of 350–500°C in alkaline melts of NaNO3 and CsNO3 salts in the field of gamma radiation from the 60Co source at the dose rate of 3000 R/s and also outside the field. Under the influence of thermoradiation treatment due to the \({\text{Na}}_{{{\text{glass}}}}^{ + }\)\({\text{Cs}}_{{{\text{melt}}}}^{ + }\) ion-exchange diffusion, mechanical compressive stresses are created in the surface layer of the glass, which lead to the formation of a waveguide layer of the given thickness and an increase in the refractive index (RI) increment, the number of waveguide modes, and the depth of the waveguide layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Nikonorov, N.V. and Petrovskii, G.T., Ion-exchanged glasses in integrated optics: The current state of research and prospects (a review), Glass Phys. Chem., 1999, vol. 25, no. 1, pp. 16–55.

    CAS  Google Scholar 

  2. Nikonorov, N.V., Sgibnev, E.M., Sidorov, A.I., and Evstrop’ev, S.K., Ionnyi obmen v shchelochesoderzhashchikh steklakh: tekhnologii, mekhanizmy, primeneniya. Chast’ 1. Serebryanye, mednye i tallievye kationy. Uchebnoe posobie (Ion Exchange in Alkali-Containing Glasses: Technologies, Mechanisms, Applications. Part 1: Silver, Copper and Thallium Cations, The School-Book), St.-Petersburg: Univ. ITMO, 2020.

  3. Giallorenzi, T.G., West, E.L., Kirk, R., Ginther, R., and Andrews, B.A., Formation and characteristics of graded-index optical waveguides burled in glass, Appl. Opt., 1973, vol. 12, no. 6, pp. 1240–1245.

    Article  CAS  Google Scholar 

  4. Evstrop’ev, S.K., Ikramov, G.I., Petrovskii, G.T., and Eshbekov, A.A., Structural microstresses in alkaline silicate glass subjected to low-temperature ion exchange, Fiz. Khim. Stekla, 1992, vol. 18, no. 2, pp. 169–173.

    Google Scholar 

  5. Kistler, S.S., Stresses in glass produced by non uniform exchange of monovalent ions, J. Am. Ceram. Soc., 1962, vol. 45, pp. 59–68.

    Article  CAS  Google Scholar 

  6. Burggraaf, A.J., The mechanical strength of alkali-aluminosilicate glasses after ion exchange, PhD Thesis, Eindhoven: Technische Hogeschool, 1965.

  7. Butaev, A.M., Prochnost’ stekla. Ionoobmennoe uprochnenie (Glass Strength. Ion Exchange Hardening), Makhachkala, 1967.

  8. Steward, G., Millar, C.A., Laybourn, P.J.R., Wilkinson, C.D.W., and de la Rue, R.M., Planar optical waveguides formed by silver-ion migration, IEEE J. Quantum Electron., 1977, vol. 13, pp. 192–200.

    Article  Google Scholar 

  9. Chartier, G., Collier, P., Guez, A., Jaussand, P., and Won, Y., Graded-index surface or buried waveguides by ion-exchange in glass, Appl. Opt., 1980, vol. 19, no. 7, pp. 1092–1095.

    Article  CAS  Google Scholar 

  10. Madasamy, P., West, B.R., Morrell, M.M., Geraghty, D.F., Honkanen, S., and Peyghambarian, N., Buried ion-exchanged glass waveguides: Burial depth dependence on the waveguide width, Opt. Lett., 2003, vol. 28, pp. 1132–1134.

    Article  CAS  Google Scholar 

  11. Ayras, P., Conti, G.N., Honkanen, S., and Peyghambarian, N., Birefringence control for ion-exchanged channel glass waveguides, Appl. Opt., 1998, vol. 37, no. 36, pp. 8400–8405.

    Article  CAS  Google Scholar 

  12. Epun, Y.B. and Yi-Yan, A., Fabrication of periodic waveguides by ion-exchange, Appl. Phys. Lett., 1981, vol. 38, no. 9, pp. 673–674.

    Article  Google Scholar 

  13. Zhurikhina, V.V., Diffusion phase diffraction gratings, Opt. Spectrosc., 2000, vol. 89, no. 6, pp. 923–927.

    Article  CAS  Google Scholar 

  14. Bähr, J. and Brenner, K.H., Realization and optimization of planar refracting microlenses by Ag–Na ion exchange techniques, Appl. Opt., 1996, vol. 35, no. 25, pp. 5102–5016.

    Article  Google Scholar 

  15. Gordova, M.R., Linares, J., Lipovskii, A.A., Zhurihina, V.V., Tagantsev, D.K., Tatarintsev, B.V., and Turunen, J., A prototype of hybrid diffractive/graded-index splitter for fiberoptics, Opt. Eng., 2001, vol. 40, no. 8, pp. 1507–1512.

    Article  Google Scholar 

  16. Tagantsev, D.K., Physical and chemical foundations for the development of glassy materials and elements for photonics, Doctoral (Chem.) Dissertation, St.-Petersburg, 2010.

  17. Petrovskii, G.T., Agafonova, K.A., Mishin, A.V., and Nikonorov, N.V., Optically controlled planar waveguides made of photochromic glass, Sov. J. Quantum Electron., 1981, vol. 11, no. 10, pp. 1387–1388.

    Article  Google Scholar 

  18. Glebov, L.B., Nikonorov, N.V., and Petrovskii, G.T., Mode selectors based on absorbing masks automatically matched to the mode field in diffusion photochromic waveguides, Opt. Spectrosc., 1986, vol. 60, no. 3, pp. 376–378.

    Google Scholar 

  19. Babukova, M.V., Berenberg, V.A., Glebov, L.B., Nikonorov, N.V., Petrovskii, G.T., and Terpugov, V.S., Investigation of neodymium silicate glass diffused waveguides, Sov. J. Quantum Electron., 1985, vol. 15, no. 9, pp. 1304–1305.

    Article  Google Scholar 

  20. Moiseev, V.V., Ion exchange properties and structure of glass, in Problemy khimii silikatov (Problems of Silicate Chemistry), Leningrad, 1974, pp. 204–218.

  21. Botvinkin, O.K., Denisenko, O.N., and Chernyakov, T.G., Ion exchange in glassmaking, in Neorganicheskie ionoobmennye materialy (Inorganic Ion Exchange Materials), Leningrad, 1974, no. 1, pp. 265–273.

  22. Moiseev, V.V., Permyakova, T.V., and Sheshukov, G.E., Ion-exchange equilibria in the glass-molten salt system, Fiz. Khim. Stekla, 1977, vol. 3, no. 1, pp. 19–22.

  23. Glebov, L.B., Nikanorov, N.V., Petrovskii, G.T., and Filipova, M.N., Influence of stresses on the refractive index of graded layers of glass obtained by ion-exchange diffusion, Fiz. Khim. Stekla, 1983, vol. 9, no. 6, pp. 683–688.

    CAS  Google Scholar 

  24. Arzikulov, E.U., Isaev, I.Kh., Eshbekov, A.A., Tuimanov, B.N., and Safarov, O.Zh., Accelerated process of transformation of waveguide layers based on silicate glass, Nauch. Vestn. Samark. Univ., 2021, no. 1, pp. 147–154.

  25. http://www.tegs.ru/wp-content/uplcads/2018/07/k-8.pdf.

  26. Chiang, K.S., Simplified universal dispersion curves for graded-index planar waveguides based on the WKB method, J. Lightwave Technol., 1995, vol. 13, no. 2, pp. 158–162.

    Article  Google Scholar 

  27. Trofimova, T.I., Kurs fiziki. Uchebnoe posobie dlya VUZov (Course of Physics: The School-Book for Higher School), Moscow: Akademiya, 2006, 11th ed.

  28. Zhurikhina, V.V., Petrov, M.I., Sokolov, K.S., and Shustova, O.V., Ion-exchange characteristics of sodium–calcium–silicate glass: Calculation from mode spectra, Tech. Phys., 2010, vol. 55, no. 10, pp. 1447–1452.

    Article  CAS  Google Scholar 

  29. Glass brand K-8: Technical data sheet. http://www.tegs.ru/wp-content/uploads/2018/07/K-8.pdf. Accessed January 21, 2023.

  30. GOST (State Standard) 3514–94: Colorless Optical Glass. Specifications, Moscow, 1997.

Download references

ACKNOWLEDGMENTS

The authors are grateful Prof. N.V. Nikonorov for his methodological assistance during the experiments and for discussion of the results.

Funding

This study was carried out on the fundamental research topic no. PP-4526 of the Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Nuritdinov or A. A. Eshbekov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuritdinov, I., Eshbekov, A.A. & Tuymanov, B.N. Formation of Waveguide Layers on the Surface of K8 Glass Produced by Thermoradiation Ion Exchange. Glass Phys Chem 49, 281–287 (2023). https://doi.org/10.1134/S1087659623600151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600151

Keywords:

Navigation