Skip to main content
Log in

Cluster Self-Organization of Intermetallic Systems: Cluster Precursors K3, K4, K5, K7, and K8 for the Self-Assembly of Lu66Te24-mC90, Te4Lu28-oC32, Lu3(TeLu3)Lu2-hP9, and Lu4Te4-cF8 Crystal Structures

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

With the help of computer methods (ToposPro software package), a combinatorial topological analysis and modeling of the self-assembly of Lu4Te4-oF8 (Fm-3m, V = 211.0 Å3), Te4Lu28-oC32 (Cmcm, V = 908.3 Å3), Lu3(TeLu3)Lu2-hP9 (P-62m, V = 908.3 Å3), and Lu66Te24-mC90 (C12/m1, V = 2467.2 Å3) crystal structures are carried out. For the crystal structure of Lu4Te4-oF8, cluster precursors K8 = 0@Te4Lu4 with symmetry –43m; for Te4Lu28-oC32, tetrahedral cluster precursors K4 = 0@Lu4 and K4 = 0@TeLu3 with symmetry 2 and m; and for Lu3(TeLu3)Lu2, cluster precursors K7 = 0@Lu3(TeLu3) with symmetry 3m and spacers Lu are established. For the crystal structure of Lu66Te24-mC90, pyramid-shaped cluster precursors K5 = 0@Lu5 with symmetry 2, tetrahedra K4 = 0@Lu4 with symmetry 2, tetrahedra K4 = 0@TeLu3, and tetrahedra K4 = 0@Te2Lu2 are established, and rings K3 = 0@TeLu2 are involved in the formation of supraclusters-trimers. The symmetry and topological code of the processes of self-assembly of 3D structures from cluster precursors is reconstructed in the following form: primary chain → layer → framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Inorganic Crystal Structure Database (ICSD), Washington, DC; USA: US Natl. Inst. Stand. Technol.

  2. Villars, P. and Cenzual, K., Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC), Materials Park, OH: ASM Int.

  3. Cannon, J.F. and Hall, H.T., High-pressure, high-temperature syntheses of selected lanthanide-tellurium compounds, Inorg. Chem., 1970, vol. 9, pp. 1639–1643.

    Article  CAS  Google Scholar 

  4. Flahaut, J., Laruelle, P., Pardo, M.P., and Guittard, M., Les sulfures, seleniures et tellurures L2X3 de terres rares, d’yttrium et descandium orthorhombiques du type Sc2S3, Bull. Soc. Chim. France, 1965, vol. 1965, pp. 1399–1404.

    Google Scholar 

  5. Hulliger, F. and Hull, G.W., Jr., Superconductivity in rocksalt-type compounds, Solid State Commun., 1970, vol. 8, pp. 1379–1382.

    Article  CAS  Google Scholar 

  6. Chen, L. and Corbett, J.D., Lu8 Te and Lu7Te, Novel substitutional derivatives of lutetium metal, J. Am. Chem. Soc., 2003, vol. 125, pp. 7794–7795.

    Article  CAS  Google Scholar 

  7. Chen, L., Xia, Sh., and Corbett, J.D., Metal-rich chalcogenides. Synthesis, structure and bonding of the layered Lu11Te4. Comparison with the similar Sc8Te3 and Ti11Se4, Inorg. Chem., 2005, vol. 44, pp. 3057–3062.

    Article  CAS  Google Scholar 

  8. Miller, A.E. and Daane, A.H., The high-temperature allotropy of some heavy rare-earth metals, Trans. Metall. Soc. AIME, 1964, vol. 230, pp. 568–572.

    CAS  Google Scholar 

  9. White, J.G. and Dismukes, J.P., The crystal structure of scandium sesquitelluride, Inorg. Chem., 1965, vol. 4, pp. 1760–1763.

    Article  CAS  Google Scholar 

  10. Assoud, A. and Kleinke, H., The sesquitelluride Sc2Te3, Acta Crystallogr., Sect. E, 2006, vol. 62, pp. i17–i18.

    Article  CAS  Google Scholar 

  11. Chai, P. and Corbett, J.D., Two new compounds, β‑ScTe and Y3Au2, and a reassessment of Y2Au, Acta Crystallogr., Sect. C, 2011, vol. 67, pp. i53–i55.

    Article  CAS  Google Scholar 

  12. Maggard, P.A. and Corbett, J.D., Sc2Te: A novel example of condensed metal polyhedra in a metal-rich but relatively electron-poor compound, Angew. Chem., Int. Ed., 1997, vol. 36, pp. 1974–1976.

    Article  CAS  Google Scholar 

  13. Maggard, P.A. and Corbett, J.D., The synthesis, structure, and bonding of Sc8Te3 and Y8Te3. Cooperative matrix and bonding effects in the solid state, Inorg. Chem., 1998, vol. 37, pp. 814–820.

    Article  CAS  Google Scholar 

  14. Gupta, S., Maggard, P.A., and Corbett, J.D., A bismuth-stabilized metal-rich telluride Lu9 Bi≈1.0 Te≈1.0: Synthesis and characterization, Eur. J. Inorg. Chem., 2010, vol. 18, pp. 2620–2625.

    Article  Google Scholar 

  15. Pardo, M.P. and Flahaut, J., Les tellurures superieurs des terres rares, de formules L2Te5 et LTe3, Bull. Soc. Chim. France, 1967, vol. 1967, pp. 3658–3664.

    Google Scholar 

  16. Brixner, L.H., Structure and electrical properties of some new rare earth arsenides, antimonides and tellurides, J. Inorg. Nucl. Chem., 1960, vol. 15, pp. 199–201.

    Article  CAS  Google Scholar 

  17. Castro-Castro, L.M., Chen, L., and Corbett, J.D., Condensed rare-earth metal-rich tellurides. Extension of layered (Sc6PdTe2)-type compounds to yttrium and lutetium analogues and to Y7Te2, the limiting binary member, J. Solid State Chem., 2007, vol. 180, pp. 3172–3179.

    Article  CAS  Google Scholar 

  18. Weirich, T.E., Ramlau, R., Simon, A., Hovmoeller, S., and Zou, X.-D., A crystal structure determined to 0.02 Å accuracy by electron crystallography, Nature, 1996, vol. 382, pp. 144–146.

    Article  CAS  Google Scholar 

  19. Shevchenko, V.Y., Blatov, V.A., and Ilyushin, G.D., Structural chemistry of intermetallic compounds: geometric and topological analysis; Cluster precursors K4, K6, and K21; and self-assembly of crystal structure Cs2Hg2-aP8, Cs2Hg4 -oI12, and Cs10Hg38-tI48, Glass Phys. Chem., 2022, vol. 48, pp. 155–162.

    Article  CAS  Google Scholar 

  20. Ilyushin, G.D., Intermetallic compounds LikMn (M = Ag, Au, Pt, Pd, Ir, Rh): Geometrical and topological analysis, tetrahedral cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, pp. 202–210.

    Article  CAS  Google Scholar 

  21. Shevchenko, V.Y., Blatov, V.A., and Ilyushin, G.D., Cluster self-organization of intermetallic systems: New two-layer nanocluster precursors K64=0@8(Sn4Ba4)@ 56(Na4Sn52) and K47=Na@Sn16@Na30 in the crystal structure of Na52Ba4Sn80-cF540, Glass Phys. Chem., 2020, vol. 46, pp. 448–454.

    Article  CAS  Google Scholar 

  22. Ilyushin, G.D., Intermetallic compounds NakMn (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 4, pp. 539–545.

    Article  CAS  Google Scholar 

  23. Ilyushin, G.D., Intermetallic compounds KnMm (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 7, pp. 1095–1105.

    Article  CAS  Google Scholar 

  24. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des., 2014, vol. 14, no. 7, pp. 3576–3585.

    Article  CAS  Google Scholar 

Download references

Funding

Analysis of the self-assembly of crystal structures was supported by the RF Ministry of Science and Higher Education as part of a state task of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences, and the cluster analysis was supported by the Russian Science Foundation (RNF no. 21-73-30019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Ya. Shevchenko or G. D. Ilyushin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.Y., Ilyushin, G.D. Cluster Self-Organization of Intermetallic Systems: Cluster Precursors K3, K4, K5, K7, and K8 for the Self-Assembly of Lu66Te24-mC90, Te4Lu28-oC32, Lu3(TeLu3)Lu2-hP9, and Lu4Te4-cF8 Crystal Structures. Glass Phys Chem 49, 215–223 (2023). https://doi.org/10.1134/S1087659623600084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600084

Keywords:

Navigation