Skip to main content
Log in

Cluster Self-Organization of Intermetallic Systems: Cluster Precursors K4, K5, and K9 for the Self-Assembly of Zr72P36-oS108, Zr18Ni22-tI40, and Zr4Ni4-oS8 Crystal Structures

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Using computer methods (ToposPro software package), a combinatorial topological analysis and modeling of the self-assembly of Zr72P36-oS108 (a = 29.509 Å, b = 19.063 Å, c = 3.607 Å, V = 2029.49 Å3, Cmmm), Zr18Ni22-tI40 (a = b = 9.880 Å, c = 6.610 Å, V = 645.23 Å3, I4/m, and Zr4Ni4-oS8 (a = 3.271 Å, b = 9.931 Å, c = 4.107 Å, V = 133.43 Å3, Cmcm) crystal structures are carried out. For the crystal structure of Zr72P36-oS108, 40 variants of the cluster representation of the 3D atomic net with the number of structural units 5, 6, and 7 are established. Structural units in the form of a pyramid K5 = 0@PZr4, tetrahedron K4 = 0@Zr4, and supratetrahedron K9 = Zr(Zr4P4) of four connected tetrahedra. For the crystal structure of Zr18Ni22-tI40 also defined supratetrahedra K9 = Ni(Zr4Ni4) are defined. For the crystal structure of Zr4Ni4-oS8, the tetrahedral cluster precursor K4 = Zr2Ni2 is defined. The symmetry and topological code of the processes of self-assembly of 3D structures from cluster precursors is reconstructed in the following form: primary chain → layer → framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Villars, P. and Cenzual, K., Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC), Materials Park, OH: ASM Int.

  2. Inorganic Crystal Structure Database (ICSD), Germany: Fachinformationszentrum Karlsruhe; USA: US Natl. Inst. Stand. Technol.

  3. Tergenius, L.E., Nolaeng, B.I., and Lundstroem, T., The crystal structure of Zr14P9, Acta Chem. Scand., Ser. A, 1981, vol. 35, pp. 693–699.

    Google Scholar 

  4. Ahlzen, P.J. and Rundqvist, S., Crystal structure refinement of Zr7P4, Z. Kristallogr., 1989, vol. 189, pp. 149–153.

    Article  CAS  Google Scholar 

  5. Irani, K.S. and Gingerich, K.A., Structural transformation of zirconium phosphide, J. Phys. Chem. Solids, 1963, vol. 24, pp. 1153–1158.

    Article  CAS  Google Scholar 

  6. Huber, M. and Deiseroth, H.J., Crystal structure of zirconium diphosphide, ZrP2, Z. Kristallogr., 1994, vol. 209, pp. 370–370.

    Article  CAS  Google Scholar 

  7. Ahlzen, P.J. and Rundqvist, S., The crystal structure of Zr2P, Z. Kristallogr., 1989, vol. 189, pp. 117–124.

    Article  CAS  Google Scholar 

  8. Ahlzen, P.J., Andersson, Y., Rundqvist, S., and Tellgren, R., A neutron diffraction study of Zr3PD3 – x, J. Less-Common Met., 1990, vol. 161, pp. 269–278.

    Article  CAS  Google Scholar 

  9. Babizhetskyy, V., Myakush, O., Simon, A., and Kotur, B., X-ray investigation of the Y–Zr–Ni system at 870 K, Intermetallics, 2013, vol. 38, pp. 44–48.

    Article  CAS  Google Scholar 

  10. Ning, J., Zhang, X., Qin, J., Liu, Y., Ma, M., and Liu, R., Phase competition mediated by composition and pressure in Zr2Cu1 – xNix system, J. Alloys Compd., 2015, vol. 618, pp. 73–77.

    Article  CAS  Google Scholar 

  11. Da, J.M., Brochado, O.C., and Harris, I.R., Valency compensation in the laves system, Ce (Co1 – xNix)2, J. Mater. Sci., 1983, vol. 18, pp. 3649–3660.

    Article  Google Scholar 

  12. Ilyushin, G.D., Symmetry and topology code of the cluster self-assembly of intermetallic compounds A2 [16]B4 [12] of the friauf families Mg2Cu4 and Mg2Zn4, Crystallogr. Rep., 2018, vol. 63, pp. 543–552.

    Article  CAS  Google Scholar 

  13. Bououdina, M., Lambert-Andron, B., Ouladdiaf, B., Pairis, S., and Fruchart, D.J., Structural investigation by neutron diffraction of equi-atomic Zr–Ti(V)–Ni(Co) compounds and their related hydrides, Alloys Compd., 2003, vol. 356, pp. 54–58.

    Article  Google Scholar 

  14. Glimois, J.L., Becle, C., Develey, G., and Moreau, J.M., Crystal structure of the intermetallic compound Ni11Zr9, J. Less-Common Met., 1979, vol. 64, pp. 87–90.

    Article  CAS  Google Scholar 

  15. Panda, S.C. and Bhan, S., Alloying behaviour of zirconium with other transition metals, Z. Metallkd., 1973, vol. 64, pp. 793–799.

    CAS  Google Scholar 

  16. Kirkpatrick, M.E. and Larsen, W.L., Phase relationships in the nickel–zirconium and nickel–hafnium alloy systems, Trans. Am. Soc. Met., 1961, vol. 54, pp. 580–590.

    CAS  Google Scholar 

  17. Ilyushin, G.D., New cluster precursors—K5 pyramids and K4 tetrahedra—for self-assembly of crystal structures of Mn4(ThMn4)(Mn4)-tI26, Mn4(CeCo4)(Co4)-tI26, and MoNi4-tI10 families, Crystallogr. Rep., 2022, vol. 67, no. 7, pp. 1088–1094.

    Article  CAS  Google Scholar 

  18. Shevchenko, V.Y., Medrish, I.V., Ilyushin, G.D., and Blatov, V.A., From clusters to crystals: Scale chemistry of intermetallics, Struct. Chem., 2019, vol. 30, pp. 2015–2027.

    Article  CAS  Google Scholar 

  19. Ilyushin, G.D., Intermetallic compounds NakMn (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 4, pp. 539–545.

    Article  CAS  Google Scholar 

  20. Ilyushin, G.D., Intermetallic compounds KnMm (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 7, pp. 1095–1105.

    Article  CAS  Google Scholar 

  21. Ilyushin, G.D., Intermetallic compounds CsnMk (M = Na, K, Rb, Pt, Au, Hg, Te): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2022, vol. 67, pp. 1075–1087.

    Article  CAS  Google Scholar 

  22. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des., 2014, vol. 14, no. 7, pp. 3576–3585.

    Article  CAS  Google Scholar 

Download references

Funding

The self-assembly of crystal structures was modeled with the support of the RF Ministry of Science and Higher Education as part of a state task of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences; cluster analysis was supported by the Russian Science Foundation (RNF no. 21-73-30019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Ya. Shevchenko or G. D. Ilyushin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.Y., Ilyushin, G.D. Cluster Self-Organization of Intermetallic Systems: Cluster Precursors K4, K5, and K9 for the Self-Assembly of Zr72P36-oS108, Zr18Ni22-tI40, and Zr4Ni4-oS8 Crystal Structures. Glass Phys Chem 49, 224–233 (2023). https://doi.org/10.1134/S1087659623600096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600096

Keywords:

Navigation