Skip to main content
Log in

Palladium Complexes [Ph3PCH2C(O)Me][PdCDmso-S)] and [Ph4Sb(Dmso-O)][PdBr3(Dmso-S)]: Synthesis and Structures

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Ionic palladium complexes with mononuclear anions [Ph3PCH2C(O)Me][PdCl3(Dmso-S)] (I) and [Ph4Sb(Dmso-O)][PdBr3(Dmso-S)] (II) are synthesized from tetraorganylphosphonium or tetraorganylstibonium halide and palladium dihalide in the presence of hydrochloric or hydrobromic acid. The structures of complexes I and II are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 1907718 (I) and 1979208 (II)). The complexes contain tetrahedral tetraorganylphosphonium or tetraorganylstibonium cations and square anions [PdHal3(Dmso-S)]. According to the XRD data, the phosphorus and antimony atoms in the cations have a slightly distorted tetrahedral coordination with the CPC (105.76(7)°−110.31(7)°) and CSbC (100.03(16)°−117.62(15)°) bond angles slightly differed from the theoretical value and close P−C (1.7903(15)−1.8037(16) Å) and Sb−C (2.061(5)−2.100(4) Å) bond lengths. The P−CAlk bonds are longer (1.8037(16) Å) than the P−CPh bonds. In the square planar anions [PdHal3(Dmso-S)], the Pd−Cl and Pd−Br bond lengths vary in ranges of 2.2918(7)−2.3012(8) and 2.371(3)−2.403(2) Å, respectively, and the S−Pd distances (2.2492(6) and 2.237(2) Å) are less than the sum of covalent radii of palladium and sulfur atoms (2.44 Å). The cis-ClPdCl (89.88(3)°) and cis-BrPdBr (88.93(4)°, 89.59(4)°) angles do not almost differ from the theoretical value (90°). The trans-ClPdCl and trans-SPdCl angles are comparable and equal to 178.15(2)° and 178.714(19)°. The corresponding values for complex II are 174.22(3)° and 177.53(4)°. The deviations of the palladium atom from the Cl3S and Br3S planes are insignificant (0.019 and 0.033 Å). The structural organization in the crystals of the complexes is formed by interionic contacts S=O···H–C (2.56−2.72 Å (I) and 2.44−2.62 Å (II)), Pd–Cl···H–C (2.83−2.93 Å), and Br···H (2.86−3.04 Å).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Meyer, D., Taige, M.A., Zeller, A., et al., Organometallics, 2009, vol. 28, no. 7, p. 2142. https://doi.org/10.1021/om8009238

    Article  CAS  Google Scholar 

  2. Gardiner, M.G., Ho, C.C., McGuinness, D.S., and Liu, Y.L., Aust. J. Chem., 2020, vol. 73, p. 1158. https://doi.org/10.1071/CH20194

    Article  CAS  Google Scholar 

  3. Gacal, E., Denizalti, S., Kinal, A., et al., Tetrahedron, 2018, vol. 74, no. 47, p. 6829. https://doi.org/10.1016/j.tet.2018.10.003

    Article  CAS  Google Scholar 

  4. Mansour, W., Fettouhi, M., and El Ali, B., ACS Omega, 2020, vol. 5, no. 50, p. 32515. https://doi.org/10.1021/acsomega.0c04706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mansour, W., Suleiman, R., and Fettouhi, M., ACS Omega, 2020, vol. 5, no. 50, p. 23687. https://doi.org/10.1021/acsomega.0c02413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Trofimov, B.A., Vasilevsky, S.F., Gusarova, N.K., et al., Mendeleev Commun., 2008, vol. 18, no. 6, p. 318. https://doi.org/10.1016/j.mencom.2008.11.010

    Article  CAS  Google Scholar 

  7. Bykov, M.V., Abramov, Z.D., Orlov, T.S., et al., J. Struct. Chem., 2021, vol. 62, no. 8, p. 1218. https://doi.org/10.1134/S0022476621080072

    Article  CAS  Google Scholar 

  8. Artem’ev, A.V., Malysheva, S.F., Gusarova, N.K., et al., Tetrahedron, 2016, vol. 72, no. 4, p. 443. https://doi.org/10.1016/j.tet.2015.11.009

    Article  CAS  Google Scholar 

  9. Artem’ev, A.V., Kuimov, V.A., Matveeva, E.A., et al., Inorg. Chem. Commun., 2017, vol. 86, p. 94. https://doi.org/10.1016/j.inoche.2017.09.008

    Article  CAS  Google Scholar 

  10. Adamson, A., Budiman, Y.P., Mkhalid, I., et al., J. Struct. Chem., 2020, vol. 61, p. 466. https://doi.org/10.1134/S0022476620030130

    Article  CAS  Google Scholar 

  11. Wolfe, M.M.W., Shanahan, J.P., Kampf, J.W., et al., J. Am. Chem. Soc., 2020, vol. 142, no. 43, p. 18698. https://doi.org/10.1021/jacs.0c09505

    Article  CAS  Google Scholar 

  12. Mori, M., Sunatsuki, Y., and Suzuki, T., Inorg. Chem., 2020, vol. 59, no. 24, p. 18225. https://doi.org/10.1021/acs.inorgchem.0c02706

    Article  CAS  PubMed  Google Scholar 

  13. Behnia, A., Fard, M.A., Blacquiere, J.M., et al., Organometallics, 2020, vol. 39, no. 22, p. 4037. https://doi.org/10.1021/acs.organomet.0c00615

    Article  CAS  Google Scholar 

  14. Materne, K., Braun-Cula, B., Herwig, C., et al., Chem.-Eur. J., 2017, vol. 23, p. 11797. https://doi.org/10.1002/chem.201703489

    Article  CAS  PubMed  Google Scholar 

  15. Lin, T.-P., Ke, I.-Sh., and Gabbai, F.P., Angew. Chem., Int. Ed. Engl., 2012, vol. 51, p. 4985. https://doi.org/10.1002/anie.201200854

    Article  CAS  PubMed  Google Scholar 

  16. Cambridge Crystallographic Data Center, 2022. http://www.ccdc.cam.ac.uk.

  17. Sharutin, V.V., Sharutina, O.K., Senchurin, V.S., et al., Russ. J. Gen. Chem., 2017, vol. 87, no. 1, p. 122. https://doi.org/10.1134/S1070363217010194

    Article  CAS  Google Scholar 

  18. Sharutin, V.V., Senchurin, V.S., and Sharutina, O.K., Russ. J. Inorg. Chem., 2013, vol. 58, no. 5, p. 543. https://doi.org/10.1134/S0036023613050203

    Article  CAS  Google Scholar 

  19. Sharutin, V.V., Sharutina, O.K., Senchurin, V.S., et al., Russ. J. Coord. Chem., 2015, vol. 41, no. 7, p. 462. https://doi.org/10.1134/S1070328415070088

    Article  CAS  Google Scholar 

  20. Sharutin, V.V., Sharutina, O.K., Senchurin, V.S., et al., Vest. YuUrGU. Ser. Khim., 2015, vol. 7, no. 2, p. 11.

    Google Scholar 

  21. Yarygina, D.M., Batalov A.E., and Senchurin V.S., Vestn. YuUrGU. Ser. Khim., 2018, vol. 10, no. 3, p. 51. https://doi.org/10.14529/chem180306

    Article  Google Scholar 

  22. Sharutin, V.V., Sharutina, O.K., Senchurin, V.S., et al., Russ. J. Inorg. Chem., 2018, vol. 63, no. 6, p. 747. https://doi.org/10.1134/S0036023618060220

    Article  CAS  Google Scholar 

  23. Denisov, M.S., Dmitriev, M.V., Eroshenko, D.V., et al., Russ. J. Inorg. Chem., 2019, vol. 64, no. 1, p. 56. https://doi.org/10.1134/S0036023619010054

    Article  CAS  Google Scholar 

  24. Gupta, A., Deka, R., Butcher, R.J., and Singh, H.B., Acta Crystallog., Sect. E: Crystallogr. Commun., 2020, vol. 76, p. 1520. https://doi.org/10.1107/S2056989020011482

    Article  CAS  Google Scholar 

  25. Hazell, A., McKenzie, C.J., and Nielsen, L.P., Dalton Trans., 1998, p. 1751. https://doi.org/10.1039/A800602D

  26. Geary, W.J., Mason, N.J., Nixon, L.A., and Nowell, I.W., Chem. Commun., 1980, no. 22, p. 1064. https://doi.org/10.1039/c39800001064

  27. Schroeter, F., Soellner, J., and Strassner, T., Chem.-Eur. J., 2019, vol. 25, p. 2527. https://doi.org/10.1002/chem.201804431

    Article  CAS  PubMed  Google Scholar 

  28. Lang, C., Pahnke, K., Kiefer, C., et al., Polym. Chem., 2013, vol. 4, no. 21, p. 5456. https://doi.org/10.1039/C3PY00648D

    Article  CAS  Google Scholar 

  29. Kocheshkov, K.A., Skoldinov, A.P., and Zemlyanskii, N.N. Metody elementoorganicheskii khimii. Sur’ma, vismut (Methods of Organoelement Chemistry. Antimony, Bismuth), Moscow: Nauka, 1976.

  30. SMART and SAINT-Plus. Version 5.0. Data Collection and Processing Software for the SMART System, Madison: Bruker AXS Inc., 1998.

  31. SHELXTL/PC. Version 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Madison: Bruker AXS Inc., 1998.

    Google Scholar 

  32. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  33. Kazitsyna, L.A. and Kupletskaya, N.B., Primenenie UF-, IK- i YaMR-spektroskopii v organicheskoi khimii (Application of UV, IR, and NMR Spectroscopy in Organic Chemistry), Moscow: Vyssh. shkola, 1971, p. 50.

  34. Kukushkin, Yu.N., Koord. Khim., 1997, vol. 23, no. 3, p. 163.

    Google Scholar 

  35. Cordero, B., Gómez, V., Platero-Prats, A.E., et al., Dalton Trans., 2008, vol. 21, p. 2832. https://doi.org/10.1039/B801115J

    Article  Google Scholar 

  36. Mantina, M., Chamberlin, A.C., Valero, R., et al., J. Phys. Chem. A, 2009, vol. 113, no. 19, p. 5806. https://doi.org/10.1021/jp8111556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Senchurin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharutin, V.V., Senchurin, V.S. Palladium Complexes [Ph3PCH2C(O)Me][PdCDmso-S)] and [Ph4Sb(Dmso-O)][PdBr3(Dmso-S)]: Synthesis and Structures. Russ J Coord Chem 49, 453–457 (2023). https://doi.org/10.1134/S107032842360033X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107032842360033X

Keywords:

Navigation