Skip to main content
Log in

Coordination Polymers of Lithium Based on 1,2-Bis[(2,6-diisopropyl-4-diethylmalonophenyl)imino]acenaphthene

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

1,2-Bis[(2,6-diisopropyl-4-diethylmalonophenyl)imino]acenaphthene (Dem-Bian) with zinc chloride forms complex [(Dem-Bian)ZnCl2] (I). The reaction of complex I with n-BuLi proceeds with the deprotonation of the malonate fragments and gives 1D coordination polymer [ZnCl2(Dem-Bian)Li(DME)2]n (II). The reaction of [(Dem-Bian)CuCl] with n-BuLi affords 1D polymer [(Dem-Bian)Li2(DME)2]n (III). Compounds IIII are characterized by elemental analysis and IR spectroscopy. Derivatives I and II are characterized by 1Н NMR spectroscopy. The crystal structures of compounds II and III are determined by X-ray diffraction (XRD). Their thermal stability is studied by thermogravimetric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bernauer, J., Pölker, J., and von Wangelin, A.J., Chem. Cat. Chem., 2022, vol. 14, no. 1, р. e202101182.

  2. Marreiros, J., Diaz-Couce, M., Ferreira, M.J., et al., Inorg. Chim. Acta, 2019, vol. 486, p. 274.

    Article  CAS  Google Scholar 

  3. Beltrani, M., Carfagna, C., Milani, B., et al., Adv. Synth. Catal., 2016, vol. 358, no. 20, p. 3244.

    Article  CAS  Google Scholar 

  4. Moskalev, M.V., Skatova, A.A., Chudakova, V.A., et al., Russ. Chem. Bull., 2015, vol. 64, no. 12, p. 2830.

    Article  CAS  Google Scholar 

  5. Moskalev, M.V., Yakub, A.M., Morozov, A.G., et al., Eur. J. Org. Chem., 2015, vol. 2015, no. 26, p. 5781.

    Article  CAS  Google Scholar 

  6. Rumble, S.L., Page, M.J., Field, L.D., et al., Eur. J. Inorg. Chem., 2012, vol. 2012, no. 13, p. 2226.

    Article  CAS  Google Scholar 

  7. Li, L., Lopes, P.S., Rosa, V., et al., Dalton Trans., 2012, vol. 41, no. 17, p. 5144.

    Article  CAS  PubMed  Google Scholar 

  8. Fedushkin, I.L., Moskalev, M.V., Lukoyanov, A.N., et al., Chem.-Eur. J., 2012, vol. 18, no. 36, p. 11264.

    Article  CAS  PubMed  Google Scholar 

  9. Fedushkin, I.L., Nikipelov, A.S., Morozov, A.G., et al., Chem.-Eur. J., 2012, vol. 18, no. 1, p. 255.

    Article  CAS  PubMed  Google Scholar 

  10. Viganó, M., Ragaini, F., Buonomenna, M.G., et al., ChemCatChem, 2010, vol. 2, no. 9, p. 1150.

    Article  Google Scholar 

  11. Alonso, J.C., Neves, P., Pires da Silva, M.J., et al., Organometallics, 2007, vol. 26, no. 23, p. 5548.

    Article  CAS  Google Scholar 

  12. Gottumukkala, A.L., Teichert, J.F., Heijnen, D., et al., J. Org. Chem., 2011, vol. 76, no. 9, p. 3498.

    Article  CAS  PubMed  Google Scholar 

  13. de Fremont, P., Clavier, H., Rosa, V., et al., Organometallics, 2011, vol. 30, no. 8, p. 2241.

    Article  CAS  Google Scholar 

  14. Yu, X., Zhu, F., Bu, D., et al., RSC Adv., 2017, vol. 7, no. 25, p. 15321.

    Article  CAS  Google Scholar 

  15. Sandl, S., Maier, T.M., van Leest, N.P., et al., ACS Catal., 2019, vol. 9, no. 8, p. 7596.

    Article  CAS  Google Scholar 

  16. Soshnikov, I.E., Bryliakov, K.P., Antonov, A.A., et al., Dalton Trans., 2019, vol. 48, no. 23, p. 7974.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, F., Tanaka, R., Li, Q., et al., Organometallics, 2018, vol. 37, no. 9, p. 1358.

    Article  CAS  Google Scholar 

  18. Liu, Z.W.Q., Solan, G.A., and Sun, W.-H., Coord. Chem. Rev., 2017, vol. 350, p. 68.

    Article  Google Scholar 

  19. Guo, L., Liu, W., and Chen, C., Mater. Chem. Front., 2017, vol. 1, no. 12, p. 2487.

    Article  CAS  Google Scholar 

  20. Small, B.L., Rios, R., Fernandez, E.R., et al., Organometallics, 2010, vol. 29, no. 24, p. 6723.

    Article  CAS  Google Scholar 

  21. Popeney, C.S. and Guan, Z., Macromolecules, 2010, vol. 43, no. 9, p. 4091.

    Article  CAS  Google Scholar 

  22. Miyamura, Y., Kinbara, K., Yamamoto, Y., et al., J. Am. Chem. Soc., 2010, vol. 132, no. 10, p. 3292.

    Article  CAS  PubMed  Google Scholar 

  23. Romain, C., Rosa, V., Fliedel, C., et al., Dalton Trans., 2012, vol. 41, no. 12, p. 3377.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, J., Li, Y., Li, Y., et al., J. Appl. Pol. Sci., 2008, vol. 109, no. 2, p. 700.

    Article  CAS  Google Scholar 

  25. Wang, F. and Chen, C., Polym. Chem., 2019, vol. 10, no. 19, p. 2354.

    Article  CAS  Google Scholar 

  26. Brown, L.A., Wekesa, F.S., Unruh, D.K., et al., J. Pol. Sci. A, 2017, vol. 55, no. 17, p. 2824.

    Article  CAS  Google Scholar 

  27. Kazarina, O.V., Gourlaouen, C., Karmazin, L., et al., Dalton Trans., 2018, vol. 47, no. 39, p. 13800.

    Article  CAS  PubMed  Google Scholar 

  28. Мorozov, A.G., Markelova, E.S., Fedyushkin, I.L., et al., Russ. J. Appl. Chem., 2018, vol. 1, no. 6, p. 1044.

    Article  Google Scholar 

  29. Fedushkin, I.L., Morozov, A.G., Chudakova, V.A., et al., Eur. J. Inorg. Chem., 2009, no. 33, p. 4995.

  30. Bazyakina, N.L., Makarov, V.M., Ketkov, S.Yu., et al., Inorg. Chem., 2021, vol. 60, p. 3238.

    Article  CAS  PubMed  Google Scholar 

  31. Koptseva, T.S., Bazyakina, N.L., Moskalev, M.V., et al., Eur. J. Inorg. Chem., 2021, vol. 60, p. 3238.

    Article  Google Scholar 

  32. Bazyakina, N.L., Moskalev, M.V., Cherkasov, A.V., et al., CrystEngComm, 2022, vol. 24, p. 2297.

    Article  CAS  Google Scholar 

  33. Koptseva, T.S., Bazyakina, N.L., Rumyantcev, R.V., et al., Mendeleev Commun., 2022, vol. 32, p. 780.

    Article  Google Scholar 

  34. Bazyakina, N.L., Makarov, V.M., Moskalev, M.V., et al., Mendeleev Commun., 2022, vol. 32, p. 759.

    Article  CAS  Google Scholar 

  35. Su, J., Yuan, S., Li, J., et al., Chem.-Eur. J., 2021, vol. 27, p. 622.

    Article  CAS  PubMed  Google Scholar 

  36. Bigdeli, F., Lollar, C.T., Morsali, A., et al., Angew. Chem., Int. Ed. Engl., 2020, vol. 59, p. 4652.

    Article  CAS  PubMed  Google Scholar 

  37. Calbo, J., Golomb, M.J., and Walsh, A., J. Mater. Chem. A, 2019, vol. 7, p. 16571.

    Article  CAS  Google Scholar 

  38. Su, J., Yuan, S., Li, J., et al., Chem.-Eur. J., 2021, vol. 27, p. 622.

    Article  CAS  PubMed  Google Scholar 

  39. Li, B., Zhao, Y.M., Kirchon, A., et al., J. Am. Chem. Soc., 2019, vol. 141, p. 6822.

    Article  CAS  PubMed  Google Scholar 

  40. Sokolov, V.G., Moskalev, M.V., Koptseva, T.S., et al., Russ. Chem. Bull., 2021, vol. 69, no. 1, p. 125.

    Article  Google Scholar 

  41. Bazhina, E.S., Aleksandrov, G.G., Kiskin, M.A., et al., Russ. J. Coord. Chem., 2020, vol. 46, no. 2, p. 89. https://doi.org/10.1134/S1070328420020025

    Article  CAS  Google Scholar 

  42. Bazhina, E.S., Shmelev, M.A., Babeshkin, K.A., et al., Russ. Chem. Bull., 2021, vol. 70, no. 11, p. 2130.

    Article  CAS  Google Scholar 

  43. Blinou, D.O., Zorina-Tikhonova, E.N., Voronina, Yu.K., et al., Russ. J. Coord. Chem., 2022, vol. 48, no. 8, p. 487. https://doi.org/10.1134/S1070328422080012

    Article  CAS  Google Scholar 

  44. APEX3. Bruker Molecular Analysis Research Tool. Version 2018.7-2, Madison: Bruker AXS Inc., 2018.

  45. Data Collection, Reduction and Correction Program. CrysAlisPro 1.171.40.67a – Software Package, Rigaku OD, 2019.

  46. SAINT. Data Reduction and Correction Program. Version 8.38A, Madison (WI): Bruker AXS Inc., 2017.

  47. Krause, L., Herbst-Irmer, R., Sheldrick, G.M., and Stalke, D., J. Appl. Crystallogr., 2015, vol. 48, p. 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, p. 3.

    Article  Google Scholar 

  49. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.

    Article  Google Scholar 

  50. Sheldrick, G.M., SHELXTL. Version 6.14. Structure Determination Software Suite, Madison (WI): Bruker AXS, 2003.

    Google Scholar 

  51. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339.

    Article  CAS  Google Scholar 

  52. Sheldrick, G.M., SADABS. Version 2016/2. Bruker/Siemens Area Detector Absorption Correction Program, Madison: Bruker AXS Inc., 2016.

    Google Scholar 

  53. SCALE3 ABSPACK: Empirical Absorption Correction. CrysAlisPro 1.171.40.67a – Software Package, Rigaku OD, 2019.

Download references

ACKNOWLEDGMENTS

This work was carried out using the equipment of the Center for Collective Use “Analytical Center of Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences” supported by the grant “Provision of Development of Material Technical Infrastructure of Centers for Collective Use of Scientific Equipment” (unique identifier RF−2296.61321X0017, agreement no. 075-15-2021-670).

Funding

This work was supported by the Russian Science Foundation, project no. 19-13-00336-П.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Fedushkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazyakina, N.L., Sokolov, V.G., Moskalev, M.V. et al. Coordination Polymers of Lithium Based on 1,2-Bis[(2,6-diisopropyl-4-diethylmalonophenyl)imino]acenaphthene. Russ J Coord Chem 49, 397–406 (2023). https://doi.org/10.1134/S1070328422600620

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328422600620

Keywords:

Navigation